Haier

COMMERCIAL & APPLIED HVAC SOLUTIONS CATALOGUE 2020

Range	8
MRV S Outdoor Units - Front Air Discharge	13
EASY MRV Supermatch Indoor Units	21
MRV 5 Full DC Inverter Outdoor Units	27
MRV 5-RC 3-Pipe Heat Recovery Outdoor Units	41
MRV W Water Cooled Heat Pumps Outdoor units	55
MRV Indoor Units	67
Smart Flow All-Way Cassette	68
4-Way Standard Cassette	70
Wall Mounted Units	73
1-Way Cassette	77
2-Way Cassette	78
Ceiling / Floor Convertible	79
Slim Duct - Low Pressure	81
Ducted - Medium Pressure	82
Ducted - High Pressure	83
Ducted - Constant Air Flow	84
Floor Console - Built-in	86
Floor Console - Exposed type	87
Floor Console - Exposed type – 2-Way Air Flow	88
MRV Indoor Units for Air Treatment	89
Ducted - High Pressure	90
Cross-Flow Heat Recovery Units	91
Cross-Flow Heat Recovery Unit with Direct-Expansion Coil	92
Thermodynamic Heat Recovery Unit	102
AHU Connection Kit for Air Treatment Units	106
Direct Expansion Air Treatment Units	110
Industrial Mobile Air Conditioning	115
Control, Management systems & Accessories	121
Chiller	155
Modular CA Series	159
Chiller H4M Series	183
Chiller HZN & HZN PLUS Series	195
Chiller VHP Series	211
Hydronic Terminals	223

The data in this catalogue is purely indicative as the data may vary. Please be advised to check the accuracy of the data with the supplier before purchasing products.

EUROVENT

Haier has been awarded the prestigious Eurovent certification for its MRV outdoor units, and the entire production facility. This recognition further underlines Haier's desire to create high-quality, high-performance and environmentally friendly products and services.

Certita & CERTIFICATE

N° 18 06 002

Variable Refrigerant Flow / Débit de réfrigérant variable

Granted on June 12, 2018 - Date Tere admission 12 Juln 2018.

This document is valid at the date of issue - Check the current validity on: Document valable à la date d'émission - Vérifier la validité en cours sur :

www.eurovent-certification.com

Participant/Titulaire

Haier Overseas Electric Appliances Corp. Ltd South room #401, Brand Center Building - Haler High-Tech Industrial Park, Lao Shan District, 266101 Qingdao (Shandong Province), China

This certificate is issued by Eurovent Certifa Certification according to the cartification rules:

ECP VRF - - Variable Refrigerant Flow - in force at ustablished date.

Pursuant to the decision notified by Eurovent Certital Certification, the right to use the mark ECP shall be granted to the beneficiary company for all products inside the defined scope according to "certify-all" principle and in the conditions defined by the certification program muntioned.

Unless withdrawn or suspended, this pertificate remains valid as long as the requirements for the cartillization. program framework are met. The validity of the certificate is to be verified on www.euroventcertification.com

THIS CERTIFICATE HAS BEEN ISSUED ON 06/11/2019 THIS CERTIFICATE IS VALID UNTIL 30/09/2020

Ce certificat est délivre par Eurovent Certific Certification dans les cantitides finites par le référentiel :

ECP VRF - - Débit de réfrigérant variable - un viguour à date d'édition.

En verru de la décision notifiée par Eurowat Cartito Certification, le droit d'usage de la marque ECP, est accordé à la société qui en est bénéficaire pour les tous les produits entrain tians le champ d'application d'affin selon le principe "certify-all" et dans les conditions définies par le programme de certification mentionne.

Sauf retrait ou suspension, ce certificat demeure valide tant que les conditions du référentiel du programme de ceraffication sont respectées. La validité du certificat est à verifier sur le site Internet www.eurovent-certification.com

CE CERTIFICAT A ÉTÉ EMIS LE 06/11/2019. CE CERTIFICAT EST VALIDE JUSQU'AU 30/09/2020

Paris, 6 novembre 2019

MANAGING BOARD MEMBER / MEMBRE DIRECTOIRE

CERTIFICATION

Organisme accrédité n° 5-0517 Certification Produits et Services selon la norme NF EN ISO/CB 17065:2012

Portée disponible sur www.cofrac.fr

Accreditation #5-0517 Products and Services Certification according to NF EN ISO/CEI 17065:2012 -

Scope available on www.cofrac.fr

COFRAC est signataire des accords MLA d'EA et MLA d'IAF, COFRAC is signatory of EA MLA and IAF MLA,

list of EA members is available on

BRAND STORY

Today, in the diverse and unconventional age of the Internet, "one size fits all" products and solutions are not enough to satisfy the customer. Customers want to be treated as autonomous individuals and respected for who they are. Everyone wants their unique lifestyle acknowledged.

That is why we listen carefully to our customers in order to gain a genuine understanding of their lifestyle and requirements.

Each of us deserves to live an extraordinary smart home experience, which can be simple, sophisticated, organised and enjoyable.

As a global leader, Haier, in addition to innovating its products and solutions, transforms its organisation into a connected platform. In doing so, internal and external resources are connected quickly

and easily. We believe only by doing so, we can best meet our customers' expectations in this rapidly evolving world. Join the Haier network. Create new possibilities.

HAIER GLOBAL NETWORK

Haier has built its infrastructure in various parts of the world to quickly meet the demands of its customers including R&D centres, production facilities, commercial companies and sales points.

Through the five R&D centres around the world, Haier has forged strategic alliances with first-class providers, research institutes and prestigious universities to create an innovative ecosystem of scholars and engineers connected by a single virtual and physical network.

RESEARCH AND DEVELOPMENT LABORATORY

Haier has set a new standard for HVAC laboratories, giving life to what today represents 'The state of the art' and one of its kind. Operating since March 2014, it is now the world's reference point.

Inside the "Haier Park" industrial complex in Qingdao China, there is the world's most advanced laboratory for testing, research and development of products for the HVAC (heating, ventilation, cooling) sector.

The 'Haier Park' has a large exhibition space with the most significant Haier innovations. You can also view the powerful Haier centrifugal chiller with magnetic suspension compressor used for comfort cooling in large commercial buildings.

COLLABORATIONS

Collaborations with the world's leading manufacturers, inside the haier centre in gingdao

The Haier laboratory is Shared with 'HIGHLY'. a Hitachi group company, manufacturing compressors for the development and testing of refrigerating circuits and compressors.

Haier laboratory shared with 'MITSUBISHI ELECTRIC', for the study and discovery of innovative technologies.

Haier laboratory shared with the Chinese national agency, for the study and research for human comfort

PRODUCTION FACILITIES

Haier AC has 8 production facilities in China, another 8 located between South Asia and North Africa. Haier has a total production capacity of 20.1 million units per year.

YAMAHA MOTOR RACING

Haier HVAC is a provider of solutions and systems for air conditioning of Yamaha Motor Racing's fixed and mobile structures.

MRV S Outdoor Units

SERIES	3 HP	4 HP	5 HP	6 HP	7 HP	8 HP	10 HP	12 HP
MRV S	0=		0-		0=		0=	
Model	AU032FHERA	AU042FPERA AU04IFPERA	AU052FPERA AU05IFPERA	AU062FPERA AU06IFPERA	AU07NFIERA(G)	AV08NMSETA	AV10NMSETA	AV12NMSETA

MRV 5 Full DC Inverter 2-pipe Heat Pump

MRV 5-RC Full DC Inverter 3-Pipe Heat Recovery

SERIES	8 HP	10 HP	12 HP	14 HP	16 HP	18 HP	20 HP	22 HP	24 HP	26 HP	28 HP	30 F	IP
MRV 5-RC		***************************************							10000000				
Model	AV08	AV10	AV12	AV14	AV16	AV18	AV20	AV22	AV24	AV26	AV28	AV30IM	A/LID A
Model		IMV	URA			IMV	URA			IMVURA		AVJOIN	VORA
SERIES	32 HP 34 H	P 36 HP 3	8 HP 40 HP	42 HP 44	4 HP	4	6 HP		48 HP 50 F	HP 52 HP 5	4 HP 56 HP	58 HP 60 HP 62 H	P 64 HP 66 HF
MRV 5-RC		1111111			1111111111		-						
Model	AV32 AV3	4 AV36 A	V38 AV40	AV42 A	V44	۸۷۸۶	IMVURA		AV48 AV5	50 AV52 A	V54 AV56	AV58 AV60 AV6	2 AV64 AV66
riodei		IM	VURA			AV40	IIIIVOKA				IMVU	JRA	
SERIES	68 HP	70 H	НР	72 HP	74 HP	76 HP	78	НР	80 HP	82 HP	84 HF	86 HP	88 HP
MRV 5-RC							1111111	MININ					
	AV68	AV	70	AV72	AV74	AV76	A۱	/78	AV80	AV82	AV84	4 AV86	AV88
Model													

MRV W Water Cooled Heat Pumps Outdoor Units

SERIES	8 HP	10 HP	12 HP	16 HP	18 HP	20 HP	22 HP	24 HP	28 HP	30 HP	32 HP	34 HP	36 HP
MRV-W		Haler			110	er Holes				- Ho	er Holes		
Model	AV08	AV10	AV12	AV16	AV18	AV20	AV22	AV24	AV28	AV30	AV32	AV34	AV36
Model		IMWEWA				IMWEWA					IMWEWA		

EASY MRV MS Valves for Residential and Commercial Units

SERIES	11.2 kW	11.2 to 18 kW	Max 33.6 kW (max 11.2 kW per single output)
EASY MRV	2	-	
Model	MS1-036A	MS1-060A	MS3-036A
Combination with Number of IU	1:1	1:1	1:3
MRV Compatibility		"S" series with front air	discharge and "5" series

EASY MRV Residential and Commercial Supermatch Indoor Units - Connectable to MRV Systems with MS Valves

CEDIEC	Kbtu/h	7	9	12	15	18	24	28	30	38	48	60
SERIES	kW	2.0	2.8	3.6	4.4	5.6	7.1	8	9	11.2	14	16
DAWN		√	1	1	/							
FLEXIS (MW)	-	1	1	1		1	1					
FLEXIS (MB)		√	1	1		1	1					
FLAIR		/	1	1		1	1					
FLOOR CONSOLE, EXPOSED TYPE, 2 WAY AIR FLOW	Petatores		1	1		1						
CASSETTE			1	1		1	1	1				
CEILING FLOOR CONVERTIBLE				1		1	/	/				
SLIM DUCT LOW PRESSURE	- 1		1	1		1	1					
DUCTED MEDIUM PRESSURE	N N			1		1	1	/				
TOWER											√	1

MRV Indoor Units

CEDIEC	Kbtu/h	5	7	9	12	16	18	24	28	30	38	48	60	72	96
SERIES	kW	1.5	2.2	2.8	3.6	4.5	5.6	7.1	8	9	11.2	14	16	22.6	28
WALL		/	1	/	/	/	/	/	1	/					
CONSOLE	Tongson.	1	1	1	1	1	1								
CASSETTE 1 WAY		1	1	1	1										
CASSETTE 2 WAY	1		1	1	1	1	1								
CASSETTE 4 WAY 90x90 AC							1	1	1	1	1	1			
CASSETTE 4 WAY 60x60 AC		1	1	1	1	1	1								
CASSETTE SMART FLOW 4 WAY DC			1	1	1	1	1	1	1	1	1	1	1		
CASSETTE 4 WAY 60x60 DC		1	1	1	1	1	1								
CEILING / FLOOR CONVERTIBLE	6.39			1	1	1	1	1	1	1	1	1			
SLIM DUCT LOW PRESSURE DC	-	1	/	/	1	1	/	/							
DUCTED MEDIUM PRESSURE		/	/	/	/	/	/	/	/	/	/	/			
DUCTED HIGH PRESSURE							1	1	1	/	/	1		1	1
DUCTED- CONSTANT AIR FLOW			1	1	1	1	1	1	1	1	1	1	1		
FLOOR CONSOLE, BUILT-IN	1		1	1	1	1	1	1							
FLOOR CONSOLE, EXPOSED			1	1	1	1	1	1							
DUCTED FRESH AIR ALL OUTDOOR AIR												1		1	1

HEAT RECOVERY UNIT	ErP	A	from 170 m ³ /h to 260 m ³ /h	9.	from 152 m³/h to 600 m³/h	from 400 m ³ /h to 4700 m ³ /h
THERMODYNAMIC HEAT			from 250 m³/h to 1300 m³/h	No.	with DX coil from 500 m³/h to 1300 m³/h	from 1500 m³/h to 4700 m³/h
THERMODYNAMIC HEAT RECOVERY UNIT With built in compressor			from 350 m ³ /h to 4500 m ³ /h			
DIRECT EXPANSION AIR TREATMENT UNITS			from 1500 m ³ /h to 4700 m ³ /h		from 5000 m ³ /h to 17000 m ³ /h	

MOBILE AIR CONDITIONING UNITS

35Kw

AHU kit to create direct-expansion air treatment units

SERIES	3,5 ≤ X ≤ 7KW	7 ≤ X ≤ 14KW	14 ≤ X ≤ 28KW	28 ≤ X ≤ 56KW	56 ≤ X ≤ 73KW						
AHU KIT				**							
Model	AH1-070B	AH1-140B	AH1-280B	AH1-560B	AH1-730B						
MRV Compatibility		"S" series with front air discharge and "5" series									

HAIER PROJECT EXPRESS SOFTWARE

The Project Express Software for equipment selection is a proprietary software to predefine cooling schemes, electrical schemes, plant yield, settings and functional parameters of MRV systems.

HAIER INTERNAL PRE-SALE SUPPORT

A professional MRV pre-sales division is available to support you in all design phases with documents, manuals, directions and plant schemes.

MRV S

DC Inverter Unit with Front Discharge

180 DEGREES VECTOR INVERTER CONTROL

Haier uses technology that recognises the position of the compressor rotors to optimise the phase shift of the nominal current and the real current applied to the compressor windings.

This allows for an efficiency increase of 17% more than traditional inverter systems.

DC INVERTER TWIN ROTARY COMPRESSOR

Twin Rotary compressors are selected for their low vibrations and high efficiency.

This is achieved thanks to the 180° phase shift between the two compression chambers (Twin).

At the time of compression, one chamber cancels the imbalance of the other because they are diametrically opposed to each other.

PRECISE POWER CONTROL

Haier PID technology (proportional, integral, differential) that simultaneously controls the compressor and the opening of the EEV valve, generates a balanced refrigerant flow and a linear power output that keeps the temperature stable in the internal areas.

HIGH EFFICIENCY EER - COP

DC INVERTER FAN MOTOR

- High efficiency at partial regimes
- 16 modulation steps
- 45% higher efficiency than AC motors

SMALL SIZES (8Hp - 10Hp - 12Hp)

FLEXIBLE INSTALLATION - WIDE PIPING LENGTH

- Total piping length 300m
- Maximum linear piping length 175m
- Maximum piping length after first branch 50m
- Maximum height difference between indoor units 15m
- Maximum height difference between indoor and outdoor units 50m (with OU above)
- Maximum height difference between outdoor and indoor units 40m (with OU below)

FLEXIBILITY IN PIPING INSTALLATION (8Hp - 10Hp - 12Hp)

CONVEYED OUTPUT

SEPARATE REFRIGERANT CHARGE VALVE

SIMPLIFIED MONITORING

Removing the outer panel displays the operating parameters on the display.

SIMPLIFIED MAINTENANCE

The control board can be accessed from the front and top panel.

RELIABILITY

Automatic refrigerant recovery system. Recovery of the refrigerant present in the indoor units and pipes is possible by operating the switches located on the outdoor unit board. This saves time, resources and maintenance costs.

MRV S Outdoor Units with Frontal Discharge

4HP

AU042FPERA AU04IFPERA

5HP

AU052FPERA AU05IFPERA

6HP

AU062FPERA AU06IFPERA

Model		AU032FHERA	AU042FPERA	AU04IFPERA	AU052FPERA	AU05IFPERA	AU062FPERA	AU06IFPERA
Commercial code		25020008J	2502000AJ	2502003AJ	2502000DJ	2502003DJ	2502000GJ	2502003GJ
Capacity								
Power Class	HP	3	4	4	5	5	6	6
Cooling	kW	8	12.6	12.6	14	14	15.5	15.5
Heating	kW	9.5	14.2	14.2	16	16	18	18
Electrical Parameters								
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	1/220-230/50/60	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	1/220-230/50/60	3/380-400/50/60 (5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	2.08	3.11	3.11	3.51	3.51	4.31	4.31
Max absorbed power - Cooling	kW	4.0	7.2	7.2	7.5	7.5	7.8	7.8
Max absorbed current - Cooling	А	19.2	34.1	11.4	35.5	11.9	36.9	12.3
Absorbed power – Heating	kW	2.10	3.18	3.18	3.72	3.72	4.39	4.39
Max absorbed power – Heating	kW	3.84	6.9	6.9	7.2	7.2	7.5	7.5
Max absorbed current – Heating	А	18.5	32.7	10.9	34.1	11.4	35.5	11.9
EER energy class	W/W	3.84	4.05	4.05	3.99	3.99	3.60	3.60
COP energy class	W/W	4.52	4.47	4.47	4.30	4.30	4.10	4.10
SEER energy class	W/W	4.79	6.82	6.82	6.92	6.92	6.45	6.45
SCOP energy class	W/W	3.31	3.92	3.92	4.17	4.17	3.80	3.80
Ventilation								
Air flow (High)	m³/h	3500	7200	7200	7200	7200	7200	7200
Sound pressure level (High)	dB(A)	54	50	50	51	51	53	53
Sound power level (High)	dB(A)	65	66	66	67	67	69	69
Installation - Dimensions - Components								
Unit Dimensions WxDxH	mm	960x340x830	950×370×1340	950x370x1340	950x370x1340	950x370x1340	950×370×1340	950x370x1340
Packaged unit dimensions WxDxH	mm	1095×410×945	1023x/471x1420	1023x/471x1420	1023x/471x1420	1023x/471x1420	1023x/471x1420	1023x/471x1420
Net weight / Gross weight	Kg	70/76	115/123	115/123	115/123	115/123	115/123	115/123
Compressor type		Rotary	Rotary	Rotary	Rotary	Rotary	Rotary	Rotary
Quantity and type of the compressor	No.	1 INV	1 INV	1 INV	1 INV	1 INV	1 INV	1 INV
Refrigerant type		R410A	R410A	R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	2.4	4	4	4	4	4	4
Ø Liquid side refrigerant pipe	mm	9.52	9.52	9.52	9.52	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	15.88	15.88	15.88	15.88	15.88	15.88	15.88
Max piping length	m	100	300	300	300	300	300	300
Max linear piping length	m	50	150	150	150	150	150	150
Max difference between IU and OU	m	30	50	50	50	50	50	50
Connectable Indoor Capacity Ratio								
Indoor / Outdoor Capacity Ratio	%	50-130	50-130	50 – 130	50-130	50-130	50 – 130	50-130
Maximum number of connectable IUs	No.	5	8	8	10	10	13	13
External Temperature Operating Limits	(*)							
Cooling	°C	-10 - 48	15-48	15-48	15-48	15-48	15-48	15-48
Heating	°C	15-21	20-27	20 – 27	20-27	20-27	20-27	20-27

^(*) The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of $27^{\circ}\text{C BS} / 19^{\circ}\text{C BU}$ and Outdoor temperature of $35^{\circ}\text{C BS} / 24^{\circ}\text{C BU}$. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of $7^{\circ}\text{C BS} / 6^{\circ}\text{C BU}$

MRV S

8HP AV08NMSETA

10HP AV10NMSETA

12HP AV12NMSETA

Model		AU07NFIERA(G)	AV08NMSETA	AV10NMSETA	AV12NMSETA
Commercial code		25002003IJ	25020112J	25020122J	25020133J
Capacity					
Power Class	HP	7	8	10	12
Cooling	kW	18	22.6	28	33.5
Heating	kW	20	25	31.5	37.5
Electrical Parameters					
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	5.19	5.79	8	9.75
Max absorbed power - Cooling	kW	7.3	10.4	14.4	15.4
Max absorbed current - Cooling	A	11.6	17.2	23.8	26.0
Absorbed power – Heating	kW	5.13	5.43	7.5	9.62
Max absorbed power – Heating	kW	7.1	9.8	12.4	15.0
Max absorbed current – Heating	А	11.2	16.2	22.3	25.3
ER energy class	W/W	3.47	3.9	3.5	3.44
COP energy class	W/W	3.90	4.6	4.2	3.9
SEER energy class	W/W	4.14	5.1	4.8	4.6
SCOP energy class	W/W	3.06	3.45	3.43	3.4
/entilation					
Air flow (High)	m³/h	6500	10000	10000	10000
Sound pressure level (High)	dB(A)	59	55	58	60
Sound power level (High)	dB(A)	70	66	69	71
nstallation - Dimensions - Components					
Jnit Dimensions WxDxH	mm	960x340x1250	1050x400x1636	1050x400x1636	1050x400x1636
Packaged unit dimensions WxDxH	mm	1095×410×1400	1150x510x1795	1150x510x1795	1150x510x1795
Net weight / Gross weight	Kg	99/107	168/183	168/183	168/183
Compressor type		Rotary	Twin Rotary	Twin Rotary	Twin Rotary
Quantity and type of the compressor	No.	1 INV	1 INV	1 INV	1 INV
Refrigerant type		R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	3.8	6.1	6.1	6.1
Ø Liquid side refrigerant pipe	mm	9.52	12.7 (b)	12.7	12.7
Ø Gas side refrigerant pipe	mm	19.05	19.05	22.22 (a)	25.4
Max piping length	m	150	300	300	300
Max linear piping length	m	70	150	150	150
Max difference between IU and OU	m	30	50	50	50
Connectable Indoor Capacity Ratio					
ndoor / Outdoor Capacity Ratio	%	50 – 130	50-130	50-130	50-130
Maximum number of connectable IUs	No.	9	13	16	16
External Temperature Operating Limits (*)					
Cooling	°C	5 - 43	5 - 43	5 - 43	5 - 43
	°C	15-21	15-21	15-21	15-21

 ^(*) The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27°C BS / 19°C BU and Outdoor temperature of 35°C BS / 24°C BU. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of 7°C BS / 6°C BU
 (a) With solder reduced from 22.22 to 19.05 for connecting the pipe to the unit valve accessory accompanying the product.
 (b) The unit also works regularly with 9.52 diameter pipe. Requires 9.52>12.7 adapter to connect to the machine (not provided by Haier).

EASY MRV

Flexible, high-efficiency MRV systems

The ideal solution to minimise noise inside the premises

EASY MRV SYSTEMS

Haier's "Easy MRV" system is the ideal solution for environments where an exceptionally very low sound level is required by the indoor air conditioning unit.

Thanks to the external remote thermal expansion valves (MS valve box) it is possible to connect to our Supermatch indoor residential units. Which as standard are not equipped with a valve and ensure very low operating sound levels, to the MRV outdoor units (with some types of indoor units, you can reach 16 dBA). In addition, if you are looking for internal wall units with a modern and different design, with high class functionality and features, our DAWN, FLEXIS and FLAIR series connected to an "Easy MRV" system will meet your requirements.

CONNECTIONS

Haier's valve boxes have built-in gas pipes to facilitate installation without requiring welds due to utilising a flare connection.

INTEGRATED SOLUTIONS FOR ALL UNITS

- $\hbox{(*)} \quad \hbox{WK-B adapter is required to connect the wired controller to the Supermatch series of wall units} \\$
- (**) available only with remote control

EASY MRV Supermatch Residential and Commercial Indoor Units

	Kbtu/h	7	9	12	15	18	24	28	48	60
SERIES	kW	2.0	2.8	3.6	4.4	5.6	7.1	8	14	16
FLEXIS-MB WK-B adapte to connect th controller	r is required									
		AS20S2SF1FA-MB	AS25S2SF1FA-MB	AS35S2SF1FA-MB		AS50S2SF1FA-MB	AS71S2SF1FA-MB			
FLEXIS-MV WK-B adapte to connect th controller	r is required	-	-	-		-	-			
		AS20S2SF1FA-MW	AS25S2SF1FA-MW	AS35S2SF1FA-MW		AS50S2SF1FA-MW	AS71S2SF1FA-MW			
DAWN WK-B adapte to connect th controller										
		AS20S2SD1FA	AS25S2SD1FA	AS35S2SD1FA	AS42S2SD1FA					
FLAIR WK-B adapte to connect th controller										
		AS20S2SF2FA	AS25S2SF2FA	AS35S2SF2FA		AS50S2SF2FA	AS71S2SF2FA			
CONSOLE only available remote contr			1	1						
			AF25S2SD1FA	AF35S2SD1FA						
CASSETTE										
			AB09CS1ERA(S)	AB12CS1ERA(S)		AB18CS1ERA(S)	AB24ES1ERA(S)	AB28ES1ERA(S)		
CEILING / F				-			0			
				AC35S2SG1FA		AC50S2SG1FA	AC71S2SG1FA			
SLIM DUCT										
			AD09SS1ERA(N)	AD12SS1ERA(N)		AD18SS1ERA(N)	AD24SS1ERA(N)			
DUCTED MEDIUM PF	RESSURE									
				AD12MS1ERA		AD18MS1ERA	AD24MS1ERA	AD28MS1ERA		
TOWER									AP48KS1ERA(S)	AP60KS1ERA(S)
standard rem keyboard on i										
									AP48DS1ERA(S)	

MS1-036A MS1-060A

MS3-036A

Model		MS1-036A	MS1-060A	MS3-036A
Commercial code		25030270J	25030275J	25030280J
Max number of indoor units	No.	1	1	3
Maximum connectable indoor unit	Btu/h	≤ 36Kbtu	36Kbtu - 60Kbtu	≤ 36Kbtu per single output (Tot. max 108Kbtu)
capacity	kW	11.2	11.2 to 18 kW	Max 33.6 kW (max 11.2 kW per single output)
Power supply	V-Ph-Hz	220~230-1-50/60	220~230-1-50/60	220~230-1-50/60
Dimensions WxDxH	mm	310x217x155	310x217x155	394×227×253
Net weight	Kg	5	5	9
Material		Galvanised steel	Galvanised steel	Galvanised steel
Colour		Grey	Grey	Grey
Liquid pipe Ø	mm	9.52 (male) / 6.35	9.52 (male) / 12.7	6.35 (male) /9.52 - 9.52 (male) / 12.7
Gas pipe Ø	mm	15.88 (male) / 12.7 / 9.52	19.05 (male) /15.88	19.05 (male) /15.88 - 15.88 (male) /12.7 / 9.52
Connection type		Flare connection	Flare connection	Flare connection
Maximum piping length (BOX - IU)	m	15	15	15
Maximum height difference of pipes (BOX - IU)	m	15	15	15

Full DC inverter "Step Less" Heat Pump Systems

WIDE RANGE OF POWER

Up to 26 HP with single module and up to 104 HP by combining up to 4 modules. Modules 8 to 16 HP are equipped with single fan, for maximum installation flexibility and a small footprint on the surface.

NEW FULL DC "STEP LESS" TECHNOLOGY

The new compressors and fan motors use a new stepless inverter control.

The control is linear from 0 to 91 Hz for a more accurate response to changes in demand, further increasing efficiency and rotation of the motors compared to a classic step vector control.

NEW 4-SIDED CONTINUOUS HEAT EXCHANGER COIL

Thanks to this new development of continuous bending, the exchanger offers a higher exchange area than other configurations, increasing the overall efficiency of the unit. Increased efficiency by 30% compared to other configurations, thanks to the absence of interruptions between the various sides of the exchanger and the systems to connect these sides together.

NEW AUTO-ADDRESSING SYSTEM

New automatic system for digital addressing indoor units reduces system commissioning time

AUTOMATIC OIL BALANCING

When pairing multiple modules with each other, it is not necessary to provide the oil equalisation pipe, as the lubrication system inside each module is self-controlled.

REFRIGERANT MANAGEMENT SYSTEM

Advanced technology allows the system to manage the volume of refrigerant in the indoor units, piping and outdoor units, this allows the reduction of refrigerant in the entire system and increases efficiency.

NEW CERTIFIED AND REGISTERED DESIGN

The unit is equipped with a hinged technical door that allows access to the electronic parts in a simple and secure way. The electronic part in turn is mounted on a mobile base that can also be opened for access to the refrigeration part of the unit.

This line of products includes new and generous fans with an aerodynamic profile tested in the wind tunnel, with a diameter of 700 mm to move large air flows in maximum tranquillity and quietness.

SMARTLINK - WIRELESS WI-FI COMMUNICATION

Wi-Fi "Smartlink", the new and exclusive wireless communication system between outdoor and indoor units (optional)

"SMARTLINK" WI-FI FEATURES

- As an alternative to the classic digital communication cable, which is required to make all indoor units talk to their outdoor units, you can install these wireless radio accessories with ZigBee technology on each indoor and outdoor unit.
- At the time of activation, the indoor units begin to dialog with each other creating a stable network of coded signals that bounce between the various internal units until they reach the outdoor unit and vice versa.

 Each indoor unit works as a signal repeater. With this system, communication is guaranteed even to the most distant indoor unit, and in the presence of walls or other obstacles.
- When an indoor unit is in maintenance, the signal of the unit is lost, this does not affect the normal functioning of the other units.
- The system is set up by the Haier service centres in the start-up phase through a special application (APP) that can be installed on smartphones or tablets (it does not require access to the Internet, as it works on a local WIFI network)

The use of the 'Smartlink' system is useful where it is impossible to reach all the units with a cable. It is expensive in economic terms and takes time to roll out a cable, intervening on an existing redevelopment plant where the existing layout of the wired communication is not known and where there was a problem on the existing cable (damage etc.) and it is not possible to detect the problem.

Radio adapter for the indoor unit to be connected to the respective electronic board.

8-16HP AV08IMVEVA AV10IMVEVA AV12IMVEVA AV14IMVEVA AV16IMVEVA

	AVIONIVIVEYA						
		AV08IMVEVA	AV10IMVEVA	AV12IMVEVA	AV14IMVEVA	AV16IMVEVA	
Model							
Touci-							
Commercial code							
Capacity							
Power Class	HP	8	10	12	14	16	
Cooling	kW	25.2	28.0	33.5	40.0	45.0	
Heating	kW	27.0	31.5	37.5	45.0	50.0	
Electrical Parameters							
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T	3/380-400/50/60 (5 wires L1+L2+L3+N	
Absorbed power - Cooling	kW	5.60	6.80	8.40	10.90	11.80	
Max absorbed power - Cooling	kW	12.00	12.90	13.80	16.40	19.20	
Absorbed current in cooling.	А	9.45	11.48	14.18	18.40	19.92	
Max absorbed current - Cooling	А	20.26	21.78	23.30	27.69	32.41	
Absorbed power – Heating	kW	5.20	6.30	8.00	10.30	11.20	
Max absorbed power – Heating	kW	10.90	12.20	12.5	15.10	18.40	
Absorbed current in heating	Α	8.78	10.64	13.51	17.39	18.91	
Max absorbed current – Heating	Α	18.40	20.60	21.10	25.49	31.06	
EER energy class	W/W	4.50	4.12	3.99	3.67	3.81	
COP energy class	W/W	5.19	5.00	4.69	4.37	4.46	
SEER energy class	W/W	7.50	7.33	7.20	6.85	6.40	
SCOP energy class	W/W	5.50	5.45	5.30	5.12	4.55	
/entilation							
Air flow (High)	m³/h	11000	11000	12000	13500	13500	
Sound pressure level (High)	dB(A)	56	56	59	59	60	
Sound power level (High)	dB(A)	67	67	70	70	71	
nstallation - Dimensions - Components							
Jnit Dimensions WxDxH	mm	980x750x1690	980x750x1690	980x750x1690	980x750x1690	980x750x1690	
Packaged unit dimensions WxDxH	mm	1070x850x1838	1070x850x1838	1070x850x1838	1070x850x1838	1070x850x1838	
Net weight / Gross weight	Kg	224/250	224/250	224/250	244/270	244/270	
Compressor type	3	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	
Quantity and type of the compressor	No.	1 INV	1 INV	1 INV	1 INV	1 INV	
Refrigerant type	· ·	R410A	R410A	R410A	R410A	R410A	
Pre-charged refrigerant qty.	Kg	8.5	8.5	8.5	10	10	
Ø Liquid side refrigerant pipe	mm	9.52	9.52	12.7	12.7	12.7	
Ø Gas side refrigerant pipe	mm	19.05	22.22	25.4	25.4	28.58	
Maximum piping length	m	500	500	500	500	500	
Max linear piping length Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220	
Standard height difference between IU and OU	m	50/40	50/40	50/40	50/40	50/40	
Standard height difference between IU and IU	m	18	18	18	18	18	
Static Pressure Fans	Pa	110	110	110	110	110	
Connectable Indoor Capacity Ratio							
ndoor / Outdoor Capacity Ratio	%	50-130	50-130	50 – 130	50-130	50-130	
Maximum number of connectable IUs	No.	13	16	20	24	27	
External Temperature Operating Limits							
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50	
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21	

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27° C BS / 19° C BU and Outdoor temperature of 35° C BS / 24°C BU. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of 7°C BS / 6°C BU

18-26HP AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

		AV18IMVEVA	AV20IMVEVA	AV22IMVEVA	AV24IMVEVA	AV26IMVEVA
Model						
Commercial code						
Capacity						
Power Class	HP	18	20	22	24	26
Cooling	kW	50.4	56.0	61.5	68.0	73.5
Heating	kW	56.5	61.5	69.0	73.0	82.5
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+
Absorbed power - Cooling	kW	14.30	15.10	16.50	17.60	18.80
Max absorbed power - Cooling	kW	21.40	25.10	28.50	29.10	33.00
Absorbed current in cooling.	А	24.14	25.49	27.86	29.71	31.74
Max absorbed current - Cooling	А	36.13	42.37	48.11	49.13	55.80
Absorbed power – Heating	kW	13.40	14.60	15.40	16.80	17.70
Max absorbed power – Heating	kW	17.70	22.70	25.50	26.50	30.40
Absorbed current in heating	А	22.62	24.65	26.00	28.36	29.88
Max absorbed current – Heating	А	29.88	38.32	43.05	44.74	51.32
EER energy class	W/W	3.52	3.71	3.73	3.86	3.91
COP energy class	W/W	4.22	4.21	4.48	4.35	4.66
SEER energy class	W/W	6.50	6.35	6.20	6.03	5.86
SCOP energy class	W/W	4.65	4.55	4.40	4.26	4.15
Ventilation						
Air flow (High)	m³/h	17000	17000	18000	18000	19000
Sound pressure level (High)	dB(A)	61	61	61	62	62
Sound power level (High)	dB(A)	72	72	72	73	73
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	1410×750×1690	1410×750×1690	1410×750×1690	1410×750×1690	1410x750x1690
Packaged unit dimensions WxDxH	mm	1515×850×1838	1515x850x1838	1515x850x1838	1515x850x1838	1515x850x1838
Net weight / Gross weight	Kg	287/317	370/400	370/400	370/400	370/400
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	1 INV	2 INV	2 INV	2 INV	2 INV
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	10	10	10	10	10
Ø Liquid side refrigerant pipe	mm	15.88	15.88	15.88	15.88	15.88
Ø Gas side refrigerant pipe	mm	28.58	28.58	28.58	28.58	28.58
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
Standard height difference between IU and IU	m	18	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110	110
Connectable Indoor Capacity Ratio						
ndoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50-130	50-130	50-130
Maximum number of connectable IUs	No.	30	33	36	40	43
External Temperature Operating Limits						
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
	°C					

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27°C BS / 19°C BU and Outdoor temperature of 35°C BS / 24°C BU. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of 7°C BS / 6°C BU

8-16HP AV08IMVEVA AV10IMVEVA AV12IMVEVA AV14IMVEVA

18-26HP AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

		AV16IMVEVA			AV26IMVEVA
Model		AV28IMVEVA AV14IMVEVA AV14IMVEVA	AV30IMVEVA AV14IMVEVA AV16IMVEVA	AV32IMVEVA AV16IMVEVA AV16IMVEVA	AV34IMVEVA AV16IMVEVA AV18IMVEVA
Commercial code					
Capacity					
Power Class	HP	28	30	32	34
Cooling	kW	80.0	85.0	90.0	95.4
Heating	kW	90.0	95.0	100.0	106.5
Electrical Parameters					
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+7
Absorbed power - Cooling	kW	21.80	22.70	23.60	26.10
Max absorbed power - Cooling	kW	32.80	35.60	38.40	40.60
Absorbed current in cooling.	А	36.80	38.32	39.84	44.06
Max absorbed current - Cooling	А	55.37	60.10	64.83	68.54
Absorbed power – Heating	kW	20.60	21.50	22.40	24.60
Max absorbed power – Heating	kW	30.20	33.50	36.80	36.10
Absorbed current in heating	А	34.78	36.30	37.82	41.53
Max absorbed current – Heating	А	50.98	56.55	62.13	60.94
EER energy class	W/W	3.67	3.74	3.81	3.66
COP energy class	W/W	4.37	4.42	4.46	4.33
SEER energy class	W/W	6.97	6.71	6.50	6.56
SCOP energy class	W/W	5.15	4.81	4.55	4.60
Ventilation					
Air flow (High)	m³/h	27000	27000	27000	30500
Sound pressure level (High)	dB(A)	62	62.5	63	63.5
Sound power level (High)	dB(A)	73	73.5	74	74.5
Installation - Dimensions - Components					
Unit Dimensions WxDxH	mm	980x750x1690 + 980x750x1690	980x750x1690 + 980x750x1690	980x750x1690 + 980x750x1690	980x750x1690 + 1410x750x1690
Packaged unit dimensions WxDxH	mm	1070x850x1838 + 1070x850x1838	1070x850x1838 + 1070x850x1838	1070x850x1838 + 1070x850x1838	1070x850x1838 + 1515x850x1838
Net weight / Gross weight	Kg	244/270 + 244/270	244/270 + 244/270	244/270 + 244/270	244/270 + 287/317
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	2 INV	2 INV	2 INV	2 INV
Refrigerant type		R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	20	20	20	20
Ø Liquid side refrigerant pipe	mm	15.88	19.05	19.05	19.05
Ø Gas side refrigerant pipe	mm	28.58	31.8	31.8	31.8
Maximum piping length	m	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40
and IU	m	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110
Connectable Indoor Capacity Ratio					
ndoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	47	50	53	56
External Temperature Operating Limits					
Cooling	°C	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27°C BS / 19°C BU and Outdoor temperature of 35°C BS / 24°C BU. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of 70°C BS / 6°C BU

8-16HP AV08IMVEVA AV10IMVEVA AV12IMVEVA AV14IMVEVA AV16IMVEVA

18-26HP AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

		AV36IMVEVA AV18IMVEVA	AV38IMVEVA AV18IMVEVA	AV40IMVEVA AV20IMVEVA	AV42IMVEVA AV20IMVEVA	AV44IMVEVA AV22IMVEVA
Model		AV18IMVEVA	AV20IMVEVA	AV20IMVEVA	AV22IMVEVA	AV22IMVEVA
Commercial code						
Capacity						
Power Class	HP	36	38	40	42	44
Cooling	kW	100.8	106.4	112.0	117.5	123.0
Heating	kW	113.0	118.0	123.0	130.5	138.0
Electrical Parameters	IXVV	113.0	110.0	123.0	130.3	130.0
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	28.60	29.40	30.20	31.60	33.00
Max absorbed power - Cooling	kW	42.80	46.50	50.20	53.60	57.00
Absorbed current in cooling.	А	48.28	49.63	50.98	53.35	55.71
Max absorbed current - Cooling	Α	72.26	78.50	84.75	90.49	96.23
Absorbed power – Heating	kW	26.80	28.00	29.20	30.00	30.80
Max absorbed power – Heating	kW	35.40	40.40	45.40	48.20	51.00
Absorbed current in heating	А	45.24	47.27	49.30	50.65	52.00
Max absorbed current – Heating	А	59.76	68.20	76.64	81.37	86.10
EER energy class	W/W	3.52	3.62	3.71	3.72	3.73
COP energy class	W/W	4.22	4.21	4.21	4.35	4.48
SEER energy class	W/W	6.60	6.51	6.43	6.34	6.26
SCOP energy class	W/W	4.65	4.61	4.58	4.49	4.42
Ventilation						
Air flow (High)	m³/h	34000	34000	34000	35000	36000
Sound pressure level (High)	dB(A)	64	64	64	64	64
Sound power level (High)	dB(A)	75	75	75	75	75
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410×750×1690 + 1410×750×1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838				
Net weight / Gross weight	Kg	287/317 + 287/317	287/317 + 370/400	370/400 + 370/400	370/400 + 370/400	370/400 + 370/400
Compressor type		DC Inverter Scroll				
Quantity and type of the compressor	No.	2 INV	3 INV	4 INV	4 INV	4 INV
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	20	20	20	20	20
Ø Liquid side refrigerant pipe	mm	19.05	19.05	19.05	19.05	19.05
Ø Gas side refrigerant pipe	mm	38.1	38.1	38.1	38.1	38.1
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
and IU Static Pressure Fans	m Pa	18	18	18	18	18
	Pd	110	110	110	110	110
Connectable Indoor Capacity Ratio	0/	50 470	FO 470	50 470	50 470	50 170
Indoor / Outdoor Capacity Ratio	% No	50 – 130	50 – 130	50-130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	59	63	64	64	64
External Temperature Operating Limits		F 50	5.50	F 50	5.50	5.50
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27° C BV | 19°C BU and Outdoor temperature of 35° C BS | 24°C BU. In Heating mode, Indoor temperature of 20° C BS and Outdoor temperature of 20° C BV | 6°C BU

MRV 5

8-16HP AV08IMVEVA AV10IMVEVA AV12IMVEVA AV14IMVEVA

18-26HP AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

		AV16IMVEVA	-		AV	26IMVEVA
Model		AV46IMVEVA AV22IMVEVA AV24IMVEVA	AV48IMVEVA AV24IMVEVA AV24IMVEVA	AV50IMVEVA AV24IMVEVA AV26IMVEVA	AV52IMVEVA AV26IMVEVA AV26IMVEVA	AV54IMVEVA AV18IMVEVA AV18IMVEVA AV18IMVEVA
Commercial code						
Capacity						
Power Class	HP	46	48	50	52	54
Cooling	kW	129.5	136.0	141.5	147.0	151.2
Heating	kW	142.0	146.0	155.5	165.0	169.5
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	34.10	35.20	36.40	37.60	42.90
Max absorbed power - Cooling	kW	57.60	58.20	62.10	66.00	64.20
Absorbed current in cooling.	А	57.57	59.42	61.45	63.48	72.42
Max absorbed current - Cooling	А	97.24	98.25	104.93	111.60	108.38
Absorbed power – Heating	kW	32.20	33.60	34.50	35.40	40.20
Max absorbed power – Heating	kW	52.00	53.00	56.90	60.80	53.10
Absorbed current in heating	Α	54.36	56.72	58.24	59.76	67.87
Max absorbed current – Heating	Α	87.79	89.48	96.06	102.64	89.64
EER energy class	W/W	3.80	3.86	3.89	3.91	3.52
COP energy class	W/W	4.41	4.35	4.51	4.66	4.22
SEER energy class	W/W	6.17	6.09	5.99	5.91	6.63
SCOP energy class	W/W	4.34	4.27	4.21	4.16	4.65
Ventilation						
Air flow (High)	m³/h	36000	36000	37000	38000	51000
Sound pressure level (High)	dB(A)	64.5	65	65	65	65.8
Sound power level (High)	dB(A)	75.5	76	76	76	76.5
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410×750×1690 - 1410×750×1690 - 1410×750×1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838	1515×850×1838 + 1515×850×1838	1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838
Net weight / Gross weight	Kg	370/400 + 370/400	370/400 + 370/400	370/400 + 370/400	370/400 + 370/400	287/317 + 287/317 287/317
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scro
Quantity and type of the compressor	No.	4 INV	4 INV	4 INV	4 INV	3 INV
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	20	20	20	20	30
Ø Liquid side refrigerant pipe	mm	19.05	19.05	19.05	19.05	19.05
Ø Gas side refrigerant pipe	mm	38.1	38.1	38.1	38.1	38.1
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
and IU	m	18	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110	110
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	64	64	64	64	64
External Temperature Operating Limits						
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27°C BS / 19°C BU and Outdoor temperature of 35°C BS / 24°C BU. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of 70°C BS / 6°C BU

8-16HP AV08IMVEVA AV10IMVEVA AV12IMVEVA AV14IMVEVA AV16IMVEVA

18-26HP AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

		AV56IMVEVA	AV58IMVEVA	AV60IMVEVA	AV62IMVEVA	AV64IMVEVA
Model		AV18IMVEVA AV18IMVEVA AV20IMVEVA	AV18IMVEVA AV20IMVEVA AV20IMVEVA	AV20IMVEVA AV20IMVEVA AV20IMVEVA	AV22IMVEVA AV20IMVEVA AV20IMVEVA	AV22IMVEVA AV22IMVEVA AV20IMVEVA
Commercial code						
Capacity						
Power Class	HP	56	58	60	62	64
Cooling	kW	156.8	162.4	168.0	173.5	179.0
Heating	kW	174.5	179.5	184.5	192.0	199.5
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	43.70	44.50	45.30	46.70	48.10
Max absorbed power - Cooling	kW	67.90	71.60	75.30	78.70	82.10
Absorbed current in cooling.	Α	73.77	75.13	76.48	78.84	81.20
Max absorbed current - Cooling	Α	114.63	120.88	127.12	132.86	138.60
Absorbed power – Heating	kW	41.40	42.60	43.80	44.60	45.40
Max absorbed power – Heating	kW	58.10	63.10	68.10	70.90	73.70
Absorbed current in heating	А	69.89	71.92	73.94	75.29	76.64
Max absorbed current – Heating	А	98.08	106.53	114.97	119.69	124.42
EER energy class	W/W	3.59	3.65	3.71	3.72	3.72
COP energy class	W/W	4.21	4.21	4.21	4.30	4.39
SEER energy class	W/W	6.56	6.50	6.45	6.39	6.33
SCOP energy class	W/W	4.63	4.60	4.58	4.52	4.47
Ventilation						
Air flow (High)	m³/h	51000	51000	51000	52000	53000
Sound pressure level (High)	dB(A)	65.8	65.8	65.8	65.8	65.8
Sound power level (High)	dB(A)	76.5	76.5	76.5	76.5	76.5
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	1410×750×1690 + 1410×750×1690 + 1410×750×1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838				
Net weight / Gross weight	Kg	287/317 + 287/317 + 370/400	287/317 + 370/400 + 370/400	370/400 + 370/400 + 370/400	370/400 + 370/400 + 370/400	370/400 + 370/400 - 370/400
Compressor type		DC Inverter Scroll				
Quantity and type of the compressor	No.	4 INV	5 INV	6 INV	6 INV	6 INV
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	30	30	30	30	30
Ø Liquid side refrigerant pipe	mm	19.05	19.05	19.05	19.05	19.05
Ø Gas side refrigerant pipe	mm	38.1	41.3	41.3	41.3	41.3
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
and IU	m	18	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110	110
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	64	64	64	64	64
External Temperature Operating Limits						
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27°C BS / 19°C BU and Outdoor temperature of 35°C BS / 24°C BU. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of 7°C BS / 6°C BU

8-16HP AV08IMVEVA AV10IMVEVA AV12IMVEVA AV14IMVEVA

18-26HP AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

		AV14IMVEVA AV16IMVEVA				24IMVEVA 26IMVEVA
Model		AV66IMVEVA AV22IMVEVA AV22IMVEVA AV22IMVEVA	AV68IMVEVA AV22IMVEVA AV22IMVEVA AV24IMVEVA	AV70IMVEVA AV22IMVEVA AV24IMVEVA AV24IMVEVA	AV72IMVEVA AV24IMVEVA AV24IMVEVA AV24IMVEVA	AV74IMVEVA AV26IMVEVA AV24IMVEVA AV24IMVEVA
Commercial code						
Capacity						
Power Class	HP	66	68	70	72	74
Cooling	kW	184.5	191.0	197.5	204.0	209.5
Heating	kW	207.0	211.0	215.0	219.0	228.5
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	49.50	50.60	51.70	52.80	54.00
Max absorbed power - Cooling	kW	85.50	86.10	86.70	87.30	91.20
Absorbed current in cooling.	А	83.57	85.42	87.28	89.14	91.16
Max absorbed current - Cooling	А	144.34	145.35	146.37	147.38	154.05
Absorbed power – Heating	kW	46.20	47.60	49.00	50.40	51.30
Max absorbed power – Heating	kW	76.50	77.50	78.50	79.50	83.40
Absorbed current in heating	А	78.00	80.36	82.72	85.09	86.61
Max absorbed current – Heating	А	129.15	130.84	132.52	134.21	140.80
EER energy class	W/W	3.73	3.77	3.82	3.86	3.88
COP energy class	W/W	4.48	4.43	4.39	4.35	4.45
SEER energy class	W/W	6.28	6.22	6.16	6.10	6.04
SCOP energy class	W/W	4.42	4.37	4.32	4.27	4.23
Ventilation						
Air flow (High)	m³/h	54000	54000	54000	54000	55000
Sound pressure level (High)	dB(A)	65.8	66	66.5	66.8	66.8
Sound power level (High)	dB(A)	76.5	77	77.5	77.8	77.8
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690 + 1410x750x1690				
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838				
Net weight / Gross weight	Kg	370/400 + 370/400 + 370/400	370/400 + 370/400 370/400			
Compressor type		DC Inverter Scroll				
Quantity and type of the compressor	No.	6 INV				
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	30	30	30	30	30
Ø Liquid side refrigerant pipe	mm	19.05	22.2	22.2	22.2	22.2
Ø Gas side refrigerant pipe	mm	41.3	44.5	44.5	44.5	44.5
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
and IU	m	18	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110	110
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	64	64	64	64	64
External Temperature Operating Limits						
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21

8-16HP AV08IMVEVA AV10IMVEVA AV12IMVEVA AV14IMVEVA AV16IMVEVA

18-26HP AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

		AV76IMVEVA AV26IMVEVA	AV78IMVEVA AV26IMVEVA	AV80IMVEVA AV20IMVEVA	AV82IMVEVA AV20IMVEVA	AV84IMVEVA AV20IMVEVA
Model		AV26IMVEVA AV24IMVEVA	AV26IMVEVA AV26IMVEVA	AV20IMVEVA AV20IMVEVA	AV20IMVEVA AV20IMVEVA	AV20IMVEVA AV22IMVEVA
Commercial code				AV20IMVEVA	AV22IMVEVA	AV22IMVEVA
Capacity						
Power Class	HP	76	78	80	82	84
Cooling	kW	215.0	220.5	224.0	229.5	235.0
Heating	kW	238.0	247.5	246.0	253.5	261.0
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	55.20	56.40	60.40	61.80	63.20
Max absorbed power - Cooling	kW	95.10	99.00	100.40	103.80	107.20
Absorbed current in cooling.	Α	93.19	95.21	101.97	104.33	106.69
Max absorbed current - Cooling	Α	160.73	167.40	169.50	175.24	180.98
Absorbed power – Heating	kW	52.20	53.10	58.40	59.20	60.00
Max absorbed power – Heating	kW	87.30	91.20	90.80	93.60	96.40
Absorbed current in heating	Α	88.12	89.64	98.59	99.94	101.29
Max absorbed current – Heating	Α	147.38	153.96	153.29	158.02	162.74
EER energy class	W/W	3.89	3.91	3.71	3.71	3.72
COP energy class	W/W	4.56	4.66	4.21	4.28	4.35
SEER energy class	W/W	5.98	5.92	6.46	6.41	6.37
SCOP energy class	W/W	4.20	4.16	4.58	4.53	4.49
Ventilation						
Air flow (High)	m³/h	56000	57000	68000	69000	70000
Sound pressure level (High)	dB(A)	66.8	66.8	67	67	67
Sound power level (High)	dB(A)	77.8	77.7	78	78	78
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	1410×750×1690 + 1410×750×1690 + 1410×750×1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838
Net weight / Gross weight	Kg	370/400 + 370/400 + 370/400	370/400 + 370/400 + 370/400	370/400 + 370/400 + 370/400 + 370/400	370/400 + 370/400 + 370/400 + 370/400	370/400 + 370/400 + 370/400 + 370/400
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	6 INV	6 INV	8 INV	8 INV	8 INV
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	30	30	40	40	40
Ø Liquid side refrigerant pipe	mm	22.2	22.2	22.2	22.2	22.2
Ø Gas side refrigerant pipe	mm	44.5	44.5	44.5	44.5	44.5
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
and IU	m	18	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110	110
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50-130	50 – 130
Maximum number of connectable IUs	No.	64	64	64	64	64
External Temperature Operating Limits						
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21

8-16HP AV08IMVEVA AV10IMVEVA

AV12IMVEVA AV14IMVEVA AV16IMVEVA

18-26HP

AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

Model		AV86IMVEVA AV20IMVEVA AV22IMVEVA	AV88IMVEVA AV22IMVEVA AV22IMVEVA	AV90IMVEVA AV24IMVEVA AV22IMVEVA	AV92IMVEVA AV24IMVEVA AV24IMVEVA	AV94IMVEVA AV24IMVEVA AV24IMVEVA
		AV22IMVEVA AV22IMVEVA	AV22IMVEVA AV22IMVEVA	AV22IMVEVA AV22IMVEVA	AV22IMVEVA AV22IMVEVA	AV24IMVEVA AV22IMVEVA
Commercial code		711221111271	7102211102071	7102211102071	7102211102071	717221117271
Capacity						
Power Class	HP	86	88	90	92	94
Cooling	kW	240.5	246.0	252.5	259.0	265.5
Heating	kW	268.5	276.0	280.0	284.0	288.0
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	64.60	66.00	67.10	68.20	69.30
Max absorbed power - Cooling	kW	110.60	114.00	114.60	115.20	115.80
Absorbed current in cooling.	А	109.06	111.42	113.28	115.14	116.99
Max absorbed current - Cooling	А	186.72	192.46	193.47	194.48	195.49
Absorbed power – Heating	kW	60.80	61.60	63.00	64.40	65.80
Max absorbed power – Heating	kW	99.20	102.00	103.00	104.00	105.00
Absorbed current in heating	А	102.64	103.99	106.36	108.72	111.08
Max absorbed current – Heating	A	167.47	172.20	173.89	175.57	177.26
EER energy class	W/W	3.72	3.73	3.76	3.80	3.83
COP energy class	W/W	4.42	4.48	4.44	4.41	4.38
SEER energy class	W/W	6.33	6.29	6.24	6.19	6.15
SCOP energy class	W/W	4.46	4.43	4.38	4.35	4.31
Ventilation						
Air flow (High)	m³/h	71000	72000	72000	72000	72000
Sound pressure level (High)	dB(A)	67	67	67.5	67.5	68
Sound power level (High)	dB(A)	78	78	78.5	78.5	78.8
Installation - Dimensions - Components	•					
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690				
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838				
Net weight / Gross weight	Kg	370/400 + 370/400 + 370/400 + 370/400	370/400 + 370/400 - 370/400 + 370/400			
Compressor type		DC Inverter Scroll				
Quantity and type of the compressor	No.	8 INV				
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	40	40	40	40	40
Ø Liquid side refrigerant pipe	mm	25.4	25.4	25.4	25.4	25.4
Ø Gas side refrigerant pipe	mm	50.8	50.8	50.8	50.8	50.8
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
and IU	m	18	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110	110
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	64	64	64	64	64
External Temperature Operating Limits						
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21

8-16HP AV08IMVEVA AV10IMVEVA AV12IMVEVA AV14IMVEVA AV16IMVEVA

18-26HP AV18IMVEVA AV20IMVEVA AV22IMVEVA AV24IMVEVA AV26IMVEVA

		AV96IMVEVA	AV98IMVEVA	AV100IMVEVA	AV102IMVEVA	AV104IMVEVA
		AV24IMVEVA	AV26IMVEVA	AV26IMVEVA	AV26IMVEVA	AV26IMVEVA
Model		AV24IMVEVA	AV24IMVEVA	AV26IMVEVA	AV26IMVEVA	AV26IMVEVA
		AV24IMVEVA	AV24IMVEVA	AV24IMVEVA	AV26IMVEVA	AV26IMVEVA
		AV24IMVEVA	AV24IMVEVA	AV24IMVEVA	AV24IMVEVA	AV26IMVEVA
Commercial code						
Capacity						
Power Class	HP	96	98	100	102	104
Cooling	kW	272.0	277.5	283.0	288.5	294.0
Heating	kW	292.0	301.5	311.0	320.5	330.0
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	70.40	71.60	72.80	74.00	75.20
Max absorbed power - Cooling	kW	116.40	120.30	124.20	128.10	132.00
Absorbed current in cooling.	Α	118.85	120.88	122.90	124.93	126.95
Max absorbed current - Cooling	Α	196.51	203.18	209.85	216.53	223.20
Absorbed power – Heating	kW	67.20	68.10	69.00	69.90	70.80
Max absorbed power – Heating	kW	106.00	109.90	113.80	117.70	121.60
Absorbed current in heating	А	113.45	114.97	116.49	118.01	119.53
Max absorbed current – Heating	Α	178.95	185.53	192.12	198.70	205.29
EER energy class	W/W	3.86	3.88	3.89	3.90	3.91
COP energy class	W/W	4.35	4.43	4.51	4.59	4.66
SEER energy class	W/W	6.11	6.06	6.01	5.97	5.93
SCOP energy class	W/W	4.27	4.24	4.21	4.19	4.16
Ventilation						
Air flow (High)	m³/h	72000	73000	74000	75000	76000
Sound pressure level (High)	dB(A)	68	68	68	68	68
Sound power level (High)	dB(A)	79	79	79	79	79
Installation - Dimensions - Components						
т		1410×750×1690 +	1410×750×1690+	1410×750×1690 +	1410×750×1690 +	1410×750×1690 +
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410×750×1690 + 1410×750×1690 + 1410×750×1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838				
Net weight / Gross weight	Kg	370/400 + 370/400 + 370/400 + 370/400				
Compressor type		DC Inverter Scroll				
Quantity and type of the compressor	No.	8 INV				
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	40	40	40	40	40
Ø Liquid side refrigerant pipe	mm	25.4	25.4	25.4	25.4	25.4
Ø Gas side refrigerant pipe	mm	50.8	54.1	54.1	54.1	54.1
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between III	m	50/40	50/40	50/40	50/40	50/40
Standard height difference between IU and IU	m	18	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110	110
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50 – 130	50-130	50 – 130	50-130	50 – 130
Maximum number of connectable IUs	No.	64	64	64	64	64
External Temperature Operating Limits						
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21

Full DC Inverter 3-Pipe Heat Recovery Systems Simultaneous heating and cooling available with a 3-pipe heat recovery outdoor unit

Various modes of simultaneous operation

EXAMPLE OF A 3-PIPE MRV 5-RC SYSTEM

NEW SELECTION VALVES

- Reduced clutter
- Electronic valves for each flow line

Model	Maximum connectable capacity (kW)	Power supply	Maximum number of connectable indoor units, same mode of operation	Dimensions (mm)
VP1-112B	x ≤ 11.2	220-240V single-phase - 50/60Hz	5	388×200×277
VP1-180B	11.2 < x ≤ 18	220-240V single-phase - 50/60Hz	8	388×200×277
VP1-280B	18 < x ≤ 28	220-240V single-phase - 50/60Hz	8	388×200×277
VP4-450B	4 ways - max 11.2kW for single output.	220-240V single-phase - 50/60Hz	20	405×300×421

The 4-way box has standard closed output connections. To be opened in case of multiple installations, so that the output of the box becomes the input of the next box. You can connect multiple 4-way boxes in sequence. The input power limit of a series is maximum 80 kW.

Flexible installation - ability to reverse the orientation of the series in order to have the connections of the indoor units on the right or left or alternating with respect to the main line.

^{* (}limit determined by the diameters of the input pipes of the valve boxes) Contact headquarters before selecting this configuration.

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

		AV08IMVURA	AV10IMVURA	AV12IMVURA	AV14IMVURA
Model					
Commercial code					
Capacity					
Power Class	HP	8	10	12	14
Cooling	kW	22.4	28	33.5	40
Heating	kW	25	31.5	37.5	45
Electrical Parameters	KVV	23	31.3	37.3	43
		3/380-400/50/60	3/380-400/50/60	3/380-400/50/60	3/380-400/50/60
Power supply	Ph-V/Hz	(5 wires L1+L2+L3+N+T)	(5 wires L1+L2+L3+N+T)	(5 wires L1+L2+L3+N+T)	(5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	5.09	6.95	8.63	11.17
Max absorbed power - Cooling	kW	12.80	13.80	18.20	19.20
Absorbed current in cooling.	А	8.41	11.47	14.26	18.45
Max absorbed current - Cooling	А	21.14	22.79	30.06	31.71
Absorbed power – Heating	kW	5.08	6.73	8.54	10.71
Max absorbed power – Heating	kW	11.50	12.5	17.40	18.40
Absorbed current in heating	А	8.39	11.12	14.11	17.69
Max absorbed current – Heating	А	18.99	20.64	28.74	30.39
EER energy class	W/W	4.40	4.03	3.88	3.58
COP energy class	W/W	4.92	4.68	4.39	4.20
SEER energy class	W/W	6.23	6.32	6.17	6.12
SCOP energy class	W/W	4.12	4.03	3.93	3.72
Ventilation					
Air flow (High)	m³/h	12000	12000	13500	13500
Sound pressure level (High)	dB(A)	57	58	60	61
Sound power level (High)	dB(A)	78	79	82	82
Installation - Dimensions - Components					
Unit Dimensions WxDxH	mm	980x750x1690	980x750x1690	980x750x1690	980x750x1690
Packaged unit dimensions WxDxH	mm	1070x850x1838	1070x850x1838	1070x850x1838	1070x850x1838
Net weight / Gross weight	Kg	246/271	246/271	257/282	257/282
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	1 INV	1 INV	1 INV	1 INV
Refrigerant type		R410A	R410A	R410A	R410A
Pre-charged refrigerant gty.	Kg	10	10	10	10
Ø Liquid side refrigerant pipe	mm	9.52	9.52	12.7	12.7
Ø Gas recovery side refrigerant pipe	mm	19.05	22.22	25.4	25.4
Ø High-pressure refrigerant gas pipe	mm	19.05	19.05	22.22	22.22
Maximum piping length	m	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220
Standard height difference between IU	m	50/40	50/40	50/40	50/40
and OU Standard height difference between IU and IU	m	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110
Connectable Indoor Capacity Ratio					
Indoor / Outdoor Capacity Ratio	%	50-130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	13	16	20	24
External Temperature Operating Limits Cooling	°C	-5~50	-5~50	-5~50	-5~50

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

		AV16IMVURA	AV18IMVURA	AV20IMVURA	AV22IMVURA
Model					
- Touci-					
Commercial code					
Capacity					
Power Class	HP	16	18	20	22
Cooling	kW	45	50	56	63
Heating	kW	50	56	63	69
Electrical Parameters					
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+
Absorbed power - Cooling	kW	12.68	14.75	16.92	19.57
Max absorbed power - Cooling	kW	25.10	28.50	32.00	33.00
Absorbed current in cooling.	А	20.93	24.36	27.94	32.31
Max absorbed current - Cooling	А	41.45	47.07	52.85	54.50
Absorbed power – Heating	kW	12.02	14.25	16.36	18.70
Max absorbed power – Heating	kW	22.70	25.50	29.40	30.40
Absorbed current in heating	А	19.85	23.53	27.02	30.88
Max absorbed current – Heating	А	37.49	42.11	48.55	50.21
EER energy class	W/W	3.55	3.39	3.31	3.22
COP energy class	W/W	4.16	3.93	3.85	3.69
SEER energy class	W/W	6.02	5.92	5.71	5.63
SCOP energy class	W/W	3.67	3.62	3.57	3.48
Ventilation					
Air flow (High)	m³/h	17000	17000	19000	19000
Sound pressure level (High)	dB(A)	62	63	63	64
Sound power level (High)	dB(A)	83	84	84	85
Installation - Dimensions - Components					
Unit Dimensions WxDxH	mm	1410×750×1690	1410×750×1690	1410×750×1690	1410x750x1690
Packaged unit dimensions WxDxH	mm	1515x850x1838	1515x850x1838	1515x850x1838	1515x850x1838
Net weight / Gross weight	Kg	366/395	366/395	375/404	375/404
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	2 INV	2 INV	2 INV	2 INV
Refrigerant type		R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	10	10	10	10
Ø Liquid side refrigerant pipe	mm	12.7	15.88	15.88	15.88
Ø Gas recovery side refrigerant pipe	mm	28.58	28.58	28.58	28.58
Ø High-pressure refrigerant gas pipe	mm	25.4	25.4	25.4	25.4
Maximum piping length	m	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40
and IU	m	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110
Connectable Indoor Capacity Ratio					
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	27	30	33	36
External Temperature Operating Limits					
Cooling	°C	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

		AV24IMVURA	AV26IMVURA	AV28IMVURA	AV30IMVURA
		AV12IMVURA	AV12IMVURA	AV14IMVURA	AV14IMVURA
Model		AV12IMVURA	AV14IMVURA	AV14IMVURA	AV16IMVURA
Commercial code					
Capacity					
Power Class	HP	24	26	28	30
Cooling	kW	67.0	73.5	80.0	85.0
Heating	kW	75.0	82.5	90.0	95.0
Electrical Parameters					
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T
Absorbed power - Cooling	kW	17.27	19.81	22.35	23.85
Max absorbed power - Cooling	kW	36.400	37.40	38.40	44.30
Absorbed current in cooling.	А	28.52	32.71	36.91	39.39
Max absorbed current - Cooling	А	60.115	61.77	63.42	73.16
Absorbed power – Heating	kW	17.08	19.26	21.43	22.73
Max absorbed power – Heating	kW	34.800	35.80	36.80	41.10
Absorbed current in heating	А	28.21	31.80	35.39	37.54
Max absorbed current – Heating	А	57.472	59.12	60.78	67.88
EER energy class	W/W	3.88	3.71	3.58	3.56
COP energy class	W/W	4.39	4.28	4.20	4.18
SEER energy class	W/W	6.14	6.12	6.10	6.04
SCOP energy class	W/W	3.93	3.82	3.72	3.69
Ventilation					
Air flow (High)	m³/h	27000	27000	27000	30500
Sound pressure level (High)	dB(A)	63	63.5	64	64.5
Sound power level (High)	dB(A)	85	85	85	85.5
nstallation - Dimensions - Components					
Unit Dimensions WxDxH	mm	980x750x1690 + 980x750x1690	980x750x1690 + 980x750x1690	980x750x1690 + 980x750x1690	980x750x1690 + 1410x750x1690
Packaged unit dimensions WxDxH	mm	1070x850x1838 + 1070x850x1838	1070x850x1838 + 1070x850x1838	1070x850x1838 + 1070x850x1838	1070x850x1838 + 1515x850x1838
Net weight / Gross weight	Kg	257/282 + 257/282	257/282 + 257/282	257/282 + 257/282	257/282 + 366/395
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	2 INV	2 INV	2 INV	3 INV
Refrigerant type		R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	20	20	20	20
Ø Liquid side refrigerant pipe	mm	15.88	15.88	15.88	19.05
Ø Gas recovery side refrigerant pipe	mm	28.58	28.58	28.58	31.8
Ø High-pressure refrigerant gas pipe	mm	25.4	25.4	25.4	28.58
Maximum piping length	m	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220
Standard height difference between IU	m	50/40	50/40	50/40	50/40
Standard height difference between IU and IU	m	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110
Connectable Indoor Capacity Ratio					
ndoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	40	43	47	50
External Temperature Operating Limits					
Cooling	°C	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

		AV14IMVURA			AV	22IMVURA
Model		AV32IMVURA AV16IMVURA AV16IMVURA	AV34IMVURA AV16IMVURA AV18IMVURA	AV36IMVURA AV18IMVURA AV18IMVURA	AV38IMVURA AV18IMVURA AV20IMVURA	AV40IMVURA AV20IMVURA AV20IMVURA
Commercial code						
Capacity						
Power Class	HP	32	34	36	38	40
Cooling	kW	90.0	95.0	100.0	106.0	112.0
Heating	kW	100.0	106.0	112.0	119.0	126.0
Electrical Parameters	1511	100.0	100.0	112.0	113.0	120.0
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	25.35	27.43	29.50	31.67	33.84
Max absorbed power - Cooling	kW	50.20	53.60	57.00	60.50	64.00
Absorbed current in cooling.	А	41.87	45.29	48.72	52.30	55.88
Max absorbed current - Cooling	А	82.91	88.52	94.14	99.92	105.70
Absorbed power – Heating	kW	24.04	26.27	28.50	30.61	32.73
Max absorbed power – Heating	kW	45.40	48.20	51.00	54.90	58.80
Absorbed current in heating	A	39.70	43.38	47.07	50.56	54.05
Max absorbed current – Heating	А	74.98	79.60	84.23	90.67	97.11
EER energy class	W/W	3.55	3.46	3.39	3.35	3.31
COP energy class	W/W	4.16	4.04	3.93	3.89	3.85
SEER energy class	W/W	6.00	5.95	5.91	5.80	5.71
SCOP energy class	W/W	3.67	3.64	3.62	3.59	3.57
Ventilation						
Air flow (High)	m³/h	34000	34000	34000	36000	38000
Sound pressure level (High)	dB(A)	65	65.5	66	66	66
Sound power level (High)	dB(A)	86	86.5	87	87	87
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	1410×750×1690 - 1410×750×1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838				
Net weight / Gross weight	Kg	366/395 + 366/395	366/395 + 366/395	366/395 + 366/395	366/395 + 375/404	375/404 + 375/40
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scrol
Quantity and type of the compressor	No.	4 INV				
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	20	20	20	20	20
Ø Liquid side refrigerant pipe	mm	19.05	19.05	19.05	19.05	19.05
Ø Gas recovery side refrigerant pipe	mm	31.8	31.8	38.1	38.1	38.1
Ø High-pressure refrigerant gas pipe	mm	28.58	28.58	34.9	34.9	34.9
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
and IU Static Pressure Fans	m Pa	18 110	18 110	18 110	18 110	18 110
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50-130	50-130
Maximum number of connectable IUs	No.	53	56	59	63	64
External Temperature Operating Limits		-				
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21
•						

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

		AV14IMVURA		AVZZIMIVUKA
Model		AV42IMVURA AV20IMVURA AV22IMVURA	AV44IMVURA AV22IMVURA AV22IMVURA	AV46IMVURA AV14IMVURA AV16IMVURA AV16IMVURA
Commercial code				
Capacity				
Power Class	HP	42	44	46
Cooling	kW	119.0	126.0	130.0
Heating	kW	132.0	138.0	145.0
Electrical Parameters				
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	36.48	39.13	36.53
Max absorbed power - Cooling	kW	65.00	66.00	69.40
Absorbed current in cooling.	А	60.25	64.62	60.32
Max absorbed current - Cooling	А	107.35	109.00	114.61
Absorbed power – Heating	kW	35.06	37.40	34.75
Max absorbed power – Heating	kW	59.80	60.80	63.80
Absorbed current in heating	А	57.91	61.76	57.39
Max absorbed current – Heating	А	98.76	100.41	105.37
EER energy class	W/W	3.26	3.22	3.56
COP energy class	W/W	3.76	3.69	4.17
SEER energy class	W/W	5.67	5.63	6.03
SCOP energy class	W/W	3.52	3.48	3.68
/entilation				
Air flow (High)	m³/h	38000	38000	47500
Sound pressure level (High)	dB(A)	66.5	67	66.5
Sound power level (High)	dB(A)	87.5	88	87.5
nstallation - Dimensions - Components				
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690	980x750x1690 + 1410x750x1690 + 1410x750x1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838	1070x850x1838 + 1515x850x1838 + 1515x850x1838
Net weight / Gross weight	Kg	375/404 + 375/404	375/404 + 375/404	257/282 + 366/395 + 366/395
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	4 INV	4 INV	5 INV
Refrigerant type		R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	20	20	30
Ø Liquid side refrigerant pipe	mm	19.05	19.05	19.05
Ø Gas recovery side refrigerant pipe	mm	38.1	38.1	38.1
Ø High-pressure refrigerant gas pipe	mm	34.9	34.9	34.9
Maximum piping length	m	500	500	500
Max linear piping length Equivalent/Real)	m	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40
and IU	m	18	18	18
Static Pressure Fans	Pa	110	110	110
Connectable Indoor Capacity Ratio				
ndoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	64	64	64
External Temperature Operating Limits				
Cooling	°C	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

		AVI4IMVUKA			,	ZZIMVUKA
Model		AV48IMVURA AV16IMVURA AV16IMVURA AV16IMVURA	AV50IMVURA AV16IMVURA AV16IMVURA AV18IMVURA	AV52IMVURA AV16IMVURA AV18IMVURA AV18IMVURA	AV54IMVURA AV18IMVURA AV18IMVURA AV18IMVURA	AV56IMVURA AV18IMVURA AV18IMVURA AV20IMVURA
Commercial code						
Capacity						
Power Class	HP	48	50	52	54	56
Cooling	kW	135.0	140.0	145.0	150.0	156.0
Heating	kW	150.0	156.0	162.0	168.0	175.0
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	38.03	40.10	42.17	44.25	46.42
Max absorbed power - Cooling	kW	75.30	78.70	82.10	85.50	89.00
Absorbed current in cooling.	А	62.80	66.23	69.65	73.08	76.66
Max absorbed current - Cooling	А	124.36	129.97	135.59	141.20	146.98
Absorbed power – Heating	kW	36.06	38.29	40.52	42.75	44.86
Max absorbed power – Heating	kW	68.10	70.90	73.70	76.50	80.40
Absorbed current in heating	А	59.55	63.23	66.92	70.60	74.09
Max absorbed current – Heating	А	112.47	117.09	121.72	126.34	132.78
EER energy class	W/W	3.55	3.49	3.44	3.39	3.36
COP energy class	W/W	4.16	4.07	4.00	3.93	3.90
SEER energy class	W/W	6.00	5.96	5.93	5.91	5.83
SCOP energy class	W/W	3.67	3.65	3.64	3.62	3.60
Ventilation						
Air flow (High)	m³/h	51000	51000	51000	51000	53000
Sound pressure level (High)	dB(A)	67	67	67.5	68	68
Sound power level (High)	dB(A)	88	88	88.5	89	89
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410×750×1690 + 1410×750×1690 + 1410×750×1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838				
Net weight / Gross weight	Kg	366/395 + 366/395 + 366/395	366/395 + 366/395 375/404			
Compressor type		DC Inverter Scroll				
Quantity and type of the compressor	No.	6 INV				
Refrigerant type		R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	30	30	30	30	30
Ø Liquid side refrigerant pipe	mm	19.05	19.05	19.05	19.05	19.05
Ø Gas recovery side refrigerant pipe	mm	38.1	38.1	38.1	38.1	38.1
Ø High-pressure refrigerant gas pipe	mm	34.9	34.9	34.9	34.9	34.9
Maximum piping length	m	500	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220	260/220
Standard height difference between IU and OU Standard height difference between IU	m	50/40	50/40	50/40	50/40	50/40
and IU	m	18	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110	110
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130	50-130	50-130
Maximum number of connectable IUs	No.	64	64	64	64	64
External Temperature Operating Limits	Ţ.					* .
Cooling	°C	-5~50	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21	-23~21
y	U	25 21	25 21	25 21	25 21	25 21

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

	7 1 2 3 11 1V O 10 1				ZINVOKA
	AV58IMVURA AV18IMVURA AV20IMVURA AV20IMVURA	AV60IMVURA AV20IMVURA AV20IMVURA AV20IMVURA	AV62IMVURA AV20IMVURA AV20IMVURA AV22IMVURA	AV64IMVURA AV20IMVURA AV22IMVURA AV22IMVURA	AV66IMVURA AV22IMVURA AV22IMVURA AV22IMVURA
HP	58	60	62	64	66
					189.0
					207.0
	102.0	103.0	130.0	201.0	207.0
Ph-V/Hz	3/380-400/50/60 (5 wires	3/380-400/50/60 (5 wires	3/380-400/50/60 (5 wires	3/380-400/50/60 (5 wires	3/380-400/50/60 (5 wires L1+L2+L3+N+T)
kW					58.70
					99.00
					96.94
					163.50
					56.10
					91.20
					92.65
					150.62
					3.22
					3.69
					5.63
					3.48
VV/VV	3.30	3.37	3.53	5.51	3.40
3/lo	55000	F7000	F7000	F7000	57000
					69
					90
	09	09	09	09.5	90
mm	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690
mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838
Kg	366/395 + 375/404 + 375/404	375/404 + 375/404 + 375/404	375/404 + 375/404 + 375/404	375/404 + 375/404 + 375/404	375/404 + 375/404 + 375/404
	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
No.	6 INV	6 INV	6 INV	6 INV	6 INV
	R410A	R410A	R410A	R410A	R410A
Kg	30	30	30	30	30
Kg mm	30 19.05	30 19.05		30 19.05	30 19.05
			30		
mm	19.05	19.05	30 19.05	19.05	19.05
mm mm	19.05 41.3	19.05 41.3	30 19.05 41.3	19.05 41.3	19.05 41.3
mm mm mm	19.05 41.3 38.1	19.05 41.3 38.1	30 19.05 41.3 38.1	19.05 41.3 38.1	19.05 41.3 38.1
mm mm mm m	19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40	30 19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40
mm mm mm m	19.05 41.3 38.1 500 260/220	19.05 41.3 38.1 500 260/220	30 19.05 41.3 38.1 500 260/220	19.05 41.3 38.1 500 260/220	19.05 41.3 38.1 500 260/220
mm mm mm m	19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40	30 19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40
mm mm mm m m	19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40	30 19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40
mm mm mm m m	19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40	30 19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40	19.05 41.3 38.1 500 260/220 50/40
mm mm mm m m m	19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110	30 19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110
mm mm mm m m m	19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110	30 19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110
mm mm mm m m m	19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110	30 19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110	19.05 41.3 38.1 500 260/220 50/40 18 110
	kW kW A A A kW kW A A A W/W W/W W/W W/W W/W W/W W/W W/W	AV18IMVURA AV20IMVURA AV20IMVURA AV20IMVURA AV20IMVURA AV20IMVURA AV20IMVURA B	AV18IMVURA AV20IMVURA AV20IMVE AV20IMVURA AV20IMVE AV20IMVURA AV20IMVE AV20IMVE AV20IMVE AV20IMVURA AV20IMVE AV20IMVE AV20IMVE AV20IMVE AV20IMVE AV20IMVE	AV18IMVURA AV20IMVURA AV20IMVE AV	AVSIIMVURA

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

		AVI4IMVUKA			AVZZIMIVUKA
Model		AV68IMVURA AV16IMVURA AV16IMVURA AV18IMVURA AV18IMVURA	AV70IMVURA AV16IMVURA AV18IMVURA AV18IMVURA AV18IMVURA	AV72IMVURA AV18IMVURA AV18IMVURA AV18IMVURA AV18IMVURA	AV74IMVURA AV18IMVURA AV18IMVURA AV18IMVURA AV20IMVURA
Commercial code		AVIOIMVUKA	AVIONIVUKA	AVIOIMVURA	AVZUIMVUKA
Capacity	HP	60	70	72	7.4
Power Class	kW	68	70	72 200.0	74
Cooling	kW	190.0 212.0	195.0 218.0	200.0	206.0 231.0
Heating Electrical Parameters	KVV	212.0	210.0	224.0	251.0
Electrical Parameters		7/700 400/50/60	7/700 400/50/60	3/380-400/50/60	7/700 400/50/50
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	(5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+
Absorbed power - Cooling	kW	54.85	56.92	59.00	61.17
Max absorbed power - Cooling	kW	107.20	110.60	114.00	117.50
Absorbed current in cooling.	Α	90.59	94.01	97.43	101.02
Max absorbed current - Cooling	А	177.04	182.66	188.27	194.05
Absorbed power – Heating	kW	52.54	54.77	57.00	59.11
Max absorbed power – Heating	kW	96.40	99.20	102.00	105.90
Absorbed current in heating	А	86.77	90.45	94.13	97.62
Max absorbed current – Heating	А	159.21	163.83	168.45	174.89
EER energy class	W/W	3.46	3.43	3.39	3.37
COP energy class	W/W	4.04	3.98	3.93	3.91
SEER energy class	W/W	5.95	5.93	5.91	5.85
SCOP energy class	W/W	3.64	3.63	3.62	3.61
Ventilation					
Air flow (High)	m³/h	68000	68000	68000	70000
Sound pressure level (High)	dB(A)	69	69	69	69
Sound power level (High)	dB(A)	90	90	90	90
Installation - Dimensions - Components					
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690			
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838			
Net weight / Gross weight	Kg	366/395 + 366/395 + 366/395 + 366/395	366/395 + 366/395 + 366/395 + 366/395	366/395 + 366/395 + 366/395 + 366/395	366/395 + 366/395 + 366/395 + 375/404
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	8 INV	8 INV	8 INV	8 INV
Refrigerant type		R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	40	40	40	40
Ø Liquid side refrigerant pipe	mm	22.2	22.2	22.2	22.2
Ø Gas recovery side refrigerant pipe	mm	44.5	44.5	44.5	44.5
Ø High-pressure refrigerant gas pipe	mm	41.3	41.3	41.3	41.3
Maximum piping length	m	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220
Standard height difference between IU and OU	m	50/40	50/40	50/40	50/40
Standard height difference between IU and IU	m	18	18	18	18
Static Pressure Fans	Pa	110	110	110	110
Connectable Indoor Capacity Ratio					
Indoor / Outdoor Capacity Ratio	%	50-130	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	64	64	64	64
External Temperature Operating Limits					
Cooling	°C	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

		AV76IMVURA AV18IMVURA	AV78IMVURA AV18IMVURA	AV80IMVURA AV20IMVURA	AV82IMVURA AV20IMVURA
Model		AV18IMVURA	AV20IMVURA	AV20IMVURA	AV20IMVURA
		AV20IMVURA	AV20IMVURA	AV20IMVURA	AV20IMVURA
		AV20IMVURA	AV20IMVURA	AV20IMVURA	AV22IMVURA
Commercial code					
Capacity					
Power Class	HP	76	78	80	82
Cooling	kW	212.0	218.0	224.0	231.0
Heating	kW	238.0	245.0	252.0	258.0
Electrical Parameters					
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	63.34	65.50	67.67	70.32
Max absorbed power - Cooling	kW	121.00	124.50	128.00	129.00
Absorbed current in cooling.	Α	104.60	108.18	111.76	116.13
Max absorbed current - Cooling	А	199.83	205.61	211.39	213.04
Absorbed power – Heating	kW	61.23	63.34	65.45	67.79
Max absorbed power – Heating	kW	109.80	113.70	117.60	118.60
Absorbed current in heating	Α	101.12	104.61	108.10	111.96
Max absorbed current – Heating	Α	181.34	187.78	194.22	195.87
EER energy class	W/W	3.35	3.33	3.31	3.28
COP energy class	W/W	3.89	3.87	3.85	3.81
SEER energy class	W/W	5.80	5.75	5.71	5.69
SCOP energy class	W/W	3.59	3.58	3.57	3.54
Ventilation					
Air flow (High)	m³/h	72000	74000	76000	76000
Sound pressure level (High)	dB(A)	69	69	69	69
Sound power level (High)	dB(A)	90	90	90	90
Installation - Dimensions - Components					
Unit Dimensions WxDxH	mm	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690	1410×750×1690 + 1410×750×1690 + 1410×750×1690 + 1410×750×1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838			
Net weight / Gross weight	Kg	366/395 + 366/395 + 375/404 + 375/404	366/395 + 375/404 + 375/404 + 375/404	375/404 + 375/404 + 375/404	375/404 + 375/404 + 375/404 + 375/404
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	8 INV	8 INV	8 INV	8 INV
Refrigerant type		R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	40	40	40	40
Ø Liquid side refrigerant pipe	mm	22.2	22.2	22.2	22.2
Ø Gas recovery side refrigerant pipe	mm	44.5	44.5	44.5	44.5
Ø High-pressure refrigerant gas pipe	mm	41.3	41.3	41.3	41.3
Maximum piping length	m	500	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220	260/220
Standard height difference between IU and OU	m	50/40	50/40	50/40	50/40
Standard height difference between IU and IU	m	18	18	18	18
and IU Static Pressure Fans	Pa	110	110	110	110
Connectable Indoor Capacity Ratio					
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50-130	50 – 130
Maximum number of connectable IUs	No.	64	64	64	64
External Temperature Operating Limits		V-1	37	37	57
Cooling	°C	-5~50	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21	-23~21
3	-				

8-14HP AV08IMVURA AV10IMVURA AV12IMVURA AV14IMVURA

16-22HP AV16IMVURA AV18IMVURA AV20IMVURA AV22IMVURA

		AV14IMVURA		AVZZIMVURA
Model		AV84IMVURA AV20IMVURA AV20IMVURA AV22IMVURA AV22IMVURA	AV86IMVURA AV20IMVURA AV22IMVURA AV22IMVURA AV22IMVURA	AV88IMVURA AV22IMVURA AV22IMVURA AV22IMVURA AV22IMVURA
Commercial code		AVZZIMVURA	AVZZIIMVORA	AVZZIMVURA
Capacity Power Class	HP	84	86	88
	kW	238.0		252.0
Cooling	kW	264.0	245.0 270.0	276.0
Heating	KVV	264.0	270.0	276.0
Electrical Parameters		7/790 400/50/60	7/780 400/50/60	3/380-400/50/60
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	(5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	72.97	75.61	78.26
Max absorbed power - Cooling	kW	130.00	131.00	132.00
Absorbed current in cooling.	A	120.51	124.88	129.25
Max absorbed current - Cooling	A	214.70	216.35	218.00
Absorbed power – Heating	kW	70.13	72.46	74.80
Max absorbed power – Heating	kW	119.60	120.60	121.60
Absorbed current in heating	А	115.81	119.67	123.53
Max absorbed current – Heating	А	197.52	199.17	200.82
EER energy class	W/W	3.26	3.24	3.22
COP energy class	W/W	3.76	3.73	3.69
SEER energy class	W/W	5.67	5.65	5.63
SCOP energy class	W/W	3.52	3.50	3.48
Ventilation				
Air flow (High)	m³/h	76000	76000	76000
Sound pressure level (High)	dB(A)	69.5	70	70
Sound power level (High)	dB(A)	90.5	91	91
Installation - Dimensions - Components				
Unit Dimensions WxDxH	mm	1410×750×1690 + 1410×750×1690 + 1410×750×1690 + 1410×750×1690	1410×750×1690 + 1410×750×1690 + 1410×750×1690 + 1410×750×1690	1410x750x1690 + 1410x750x1690 + 1410x750x1690 + 1410x750x1690
Packaged unit dimensions WxDxH	mm	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838	1515x850x1838 + 1515x850x1838 + 1515x850x1838 + 1515x850x1838
Net weight / Gross weight	Kg	375/404 + 375/404 + 375/404 + 375/404	375/404 + 375/404 + 375/404 + 375/404	375/404 + 375/404 + 375/404 + 375/404
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	8 INV	8 INV	8 INV
Refrigerant type		R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	40	40	40
Ø Liquid side refrigerant pipe	mm	22.2	25.4	25.4
Ø Gas recovery side refrigerant pipe	mm	44.5	50.8	50.8
Ø High-pressure refrigerant gas pipe	mm	41.3	44.5	44.5
Maximum piping length	m	500	500	500
Max linear piping length (Equivalent/Real)	m	260/220	260/220	260/220
Standard height difference between IU and OU	m	50/40	50/40	50/40
Standard height difference between IU and IU	m	18	18	18
Static Pressure Fans	Pa	110	110	110
Connectable Indoor Capacity Ratio				
Indoor / Outdoor Capacity Ratio	%	50 – 130	50 – 130	50 – 130
Maximum number of connectable IUs	No.	64	64	64
External Temperature Operating Limits				
Cooling	°C	-5~50	-5~50	-5~50
Heating	°C	-23~21	-23~21	-23~21

MRVW

Heat Pump System Full DC Inverter Water Cooled

OPERATING PRINCIPLE

MRV-W are MRV/VRF systems with direct refrigerant expansion and inverter compressors that use the same indoor units as the classic MRV systems, controls and joints. The design and implementation of the internal circuit follows the same rules as a normal MRV/VRF system, the only difference is that they use water and not air to condense or evaporate on the outdoor unit. MRV-W therefore does not have fans and large air/refrigerant exchangers but uses special water/refrigerant exchangers. This allows to significantly reduce the size of the product compared to a classic MRV of equal cooling capacity. Thanks to its small footprint, of only L 775 x P 545 x A 995, the installation of the MRV-W takes place inside technical rooms, basements, garages and corridors as it does not need to exchange energy with the outdoor air.

The water needed for operation reaches the units through small diameter pipes. Water can have different origins such as ground water, lake, sea, river, end industrial processes, accumulation of non-drinking water.

CONFIGURATION

MRW-W is a direct expansion system that combines the efficiency of the VRF technology with the use of water from a variety of sources.

EXAMPLE OF COOLING OPERATION

EXAMPLE OF HEATING OPERATION

MRV-W INTERNAL STRUCTURE

Refrigerant connections to indoor units

Electrical, compact and easily removable panel to access the compressor

Water entry and exit to the gas/ water exchanger

Generous gas separator and liquid refrigerant side.

Double-wrapped "pipe in pipe" gas water exchanger in counter flow, great efficiency and uniformity of exchange.

DC Inverter Compressor

HIGH EFFICIENCY

Using a constant source, the COP can also reach values of 6.02, much higher than an air/air system. As a result, EER values are also increased in equal proportion.

HIGH-EFFICIENCY COMPRESSOR

DC Inverter Scroll

COUNTER CURRENT "PIPE IN PIPE" EXCHANGER

Water circulates inside and refrigerant circulates outside. The internal star-section and spiral tube offers a greater exchange surface than a classic circular section, for the benefit of efficiency.

DUAL ELECTRONIC EXPANSION VALVE

To modulate the surface of the active exchanger according to the thermal demand.

2-SIDED SUB-COOLING SYSTEM

- The first stage acts on the condenser
- The second stage acts independently
- The independent or joint activity of the two stages allows to increase the exchange of refrigerant by 46% and to reduce the loss of load through the pipes by 55%, leading to an increase in overall efficiency of 9% compared to single circuits "Under cooling"

RELIABILITY

The management of the external pump or electro-valves to power the flow of water to the MRV-W systems, is controlled by the unit itself according to the activity of the compressor and the real need for water. Avoiding unnecessary waste of energy.

CONSTANT PRESSURE

Accurate system to maintain the pressure adequate to the compressor according to the operating temperature of the refrigerant in order to maintain a more stable output capacity and for the reliability over time of the component itself.

FLEXIBLE INSTALLATION

Using water as a condenser, you can air-condition very tall buildings, where you can reach up to 200 meters in height with a pressure of 1.6 MPa.

COOLING ELECTRONIC CIRCUITS

The circuits are cooled by special static exchangers where the refrigerant gas circulates inside. This allows you to cool and keep the temperature of the electric panel and power modules constant, avoiding cumbersome sinks and especially the use of noisy electric fans.

TEMPERATURE RANGE

POSSIBLE ENVIRONMENTS WHERE MRV-W CAN BE INSTALLED INTERNALLY

EXAMPLES OF PIPING LENGTHS

Ability to achieve large elevations and lengths within each floor served by an MRV-W.

8-12HP AV08IMWEWA AV10IMWEWA AV12IMWEWA

		AV08IMWEWA	AV10IMWEWA	AV12IMWEWA
Model				
Commercial code				
Capacity				
Power Class	HP	8	10	12
Cooling	kW	22.4	28	33.5
Heating	kW	25	31.5	37.5
Electrical Parameters	1744	25	31.3	57.5
	5	3/380-400/50/60	3/380-400/50/60	3/380-400/50/60
Power supply	Ph-V/Hz	(5 wires L1+L2+L3+N+T)	(5 wires L1+L2+L3+N+T)	(5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	4.50	6.00	7.70
1ax absorbed power - Cooling	kW	13.00	15.00	17.00
bsorbed current in cooling.	A	7.20	9.60	12.32
1ax absorbed current - Cooling	A	20.79	23.99	27.19
Absorbed power – Heating	kW	4.15	5.80	7.80
1ax absorbed power – Heating	kW	13.00	15.00	17.00
bsorbed current in heating	A	6.64	9.28	12.47
1ax absorbed current – Heating	A	20.79	23.99	27.19
ER energy class	W/W	4.98	4.67	4.35
COP energy class	W/W	6.02	5.43	4.81
EER energy class	W/W	5.87	5.76	5.69
COP energy class	W/W	6.13	6.01	5.96
erformance				
Vater flow (High)	m³/h	4.8	6	7.2
ound pressure level (High)	dB(A)	50	51	53
ound power level (High)	dB(A)	61	62	64
nstallation - Dimensions - Components				
Init Dimensions WxDxH	mm	775x545x995	775x545x995	775x545x995
ackaged unit dimensions WxDxH	mm	840x625x1150	840x625x1150	840x625x1150
let weight / Gross weight	Kg	172/183	172/183	172/183
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	1 INV	1 INV	1 INV
lefrigerant type		R410A	R410A	R410A
re-charged refrigerant qty.	Kg	2	2	2
ð Liquid side refrigerant pipe	mm	9.52	9.52	12.7
ð Gas side refrigerant pipe	mm	19.05	22.2	25.4
OU Oil Equalisation Pipe	mm	9.52	9.52	9.52
1aximum piping length	m	300	300	300
fax linear piping length Equivalent/Real)	m	150/120	150/120	150/120
flax height difference between IU and OU (*)	m	50/40	50/40	50/40
Vater/gas exchanger				
уре		Double - tube in tube	Double - tube in tube	Double - tube in tube
1aterial		Copper/steel	Copper/steel	Copper/steel
Vater input connection		DN32	DN32	DN32
Vater output connection		DN32	DN32	DN32
xchanger pressure drop	Кра	35	50	70
Connection type		Internal thread	Internal thread	Internal thread
1ax water input pressure	Мра	1.6	1.6	1.6
Vater input temperature range (Cooling/	°C	7~45	7~45	7~45
leating)	<u> </u>	, ,3	. 43	, 43
Connectable Indoor Capacity Ratio	0/	FO 170	50.170	FO 170
ndoor / Outdoor Capacity Ratio	%	50-130	50-130	50-130
Maximum number of connectable IUs	No.	13	16	19

^{(*1) 50} m when the outdoor unit is above the indoor unit / 40 m when it is below

8-12HP AV08IMWEWA AV10IMWEWA AV12IMWEWA

Model		AV16IMWEWA AV08IMWEWA AV08IMWEWA	AV18IMWEWA AV08IMWEWA AV10IMWEWA	AV20IMWEWA AV10IMWEWA AV10IMWEWA	AV22IMWEWA AV10IMWEWA AV12IMWEWA	AV24IMWEWA AV12IMWEWA AV12IMWEWA
Commercial code						
Capacity						
Power Class	HP	16	18	20	22	24
Cooling	kW	44.8	50.4	56	61.5	67.0
Heating	kW	50.0	56.5	63	69.0	75.0
Electrical Parameters						
Power supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)				
Absorbed power - Cooling	kW	9.00	10.50	12.00	13.70	15.40
Max absorbed power - Cooling	kW	26.00	28.00	30.00	32.00	34.00
Absorbed current in cooling.	Α	14.39	16.79	19.19	21.91	24.63
Max absorbed current - Cooling	Α	41.58	44.78	47.98	51.18	54.38
Absorbed power – Heating	kW	8.30	9.95	11.60	13.60	15.60
Max absorbed power – Heating	kW	26.00	28.00	30.00	32.00	34.00
Absorbed current in heating	A	13.27	15.91	18.55	21.75	24.95
Max absorbed current – Heating	A	41.58	44.78	47.98	51.18	54.38
EER energy class	W/W	4.98	4.8	4.67	4.49	4.35
COP energy class	W/W	6.02	5.68	5.43	5.07	4.81
SEER energy class	W/W	5.87	5.82	5.76	5.73	5.69
SCOP energy class	W/W	6.13	6.10	6.01	5.98	5.96
Performance	1	3.25	3.20			3.00
Water flow (High)	m³/h	9.6	10.8	12	13.2	14.4
Sound pressure level (High)	dB(A)	53	54	54	55	56
Sound power level (High)	dB(A)	64	65	65	66	67
Installation - Dimensions - Components						
Unit Dimensions WxDxH	mm	(775×545×995)*2	(775x545x995)*2	(775×545×995)*2	(775×545×995)*2	(775x545x995)*2
Packaged unit dimensions WxDxH	mm	(840×625×1150)*2	(840×625×1150)*2	(840×625×1150)*2	(840×625×1150)*2	(840×625×1150)*2
Net weight / Gross weight	Kg	344/366	344/366	344/366	344/366	344/366
Compressor type	9	DC Inverter Scroll				
Quantity and type of the compressor	No.	2 INV				
Refrigerant type	. 10.	R410A	R410A	R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	4	4	4	4	4
Ø Liquid side refrigerant pipe	mm	12.7	15.9	15.9	15.9	15.9
Ø Gas side refrigerant pipe	mm	28.6	28.6	28.6	28.6	28.6
Ø OU Oil Equalisation Pipe	mm	9.52	9.52	9.52	9.52	9.52
Maximum piping length	m	300	300	300	300	300
Max linear piping length (Equivalent/Real)	m	150/120	150/120	150/120	150/120	150/120
Max height difference between IU and OU (*)	m	50/40	50/40	50/40	50/40	50/40
Water/gas exchanger						
Туре		Double - tube in tube				
Material		Copper/steel	Copper/steel	Copper/steel	Copper/steel	Copper/steel
Water input connection		DN32	DN32	DN32	DN32	DN32
Water output connection		DN32	DN32	DN32	DN32	DN32
Exchanger pressure drop	Кра	35+35	35+50	50+50	50+70	70+70
Connection type		Internal thread				
Max water input pressure	Мра	1.6	1.6	1.6	1.6	1.6
Water input temperature range (Cooling/ Heating)	°C	7~45	7~45	7~45	7~45	7~45
Connectable Indoor Capacity Ratio						
Indoor / Outdoor Capacity Ratio	%	50-130	50-130	50-130	50-130	50-130
Maximum number of connectable IUs	No.	23	29	33	36	39

^{(*1) 50} m when the outdoor unit is above the indoor unit / 40 m when it is below

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27°C BS / 19°C BU and Outdoor temperature of 35°C BS / 24°C BU. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of 7°C BS / 6°C BU

8-12HP AV08IMWEWA AV10IMWEWA AV12IMWEWA

		AV26IMWEWA	AV28IMWEWA	AV30IMWEWA
Model		AV08IMWEWA	AV08IMWEWA	AV10IMWEWA
·lodel		AV08IMWEWA	AV10IMWEWA	AV10IMWEWA
		AV10IMWEWA	AV10IMWEWA	AV10IMWEWA
Commercial code				
Capacity				
Power Class	HP	26	28	30
Cooling	kW	72.8	78.4	84.0
Heating	kW	81.5	88.0	94.5
Electrical Parameters				
ower supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)
Absorbed power - Cooling	kW	15.00	16.50	18.00
1ax absorbed power - Cooling	kW	41.00	43.00	45.00
Absorbed current in cooling.	А	23.99	26.39	28.79
1ax absorbed current - Cooling	А	65.57	68.77	71.97
Absorbed power – Heating	kW	14.10	15.75	17.40
1ax absorbed power – Heating	kW	41.00	43.00	45.00
Absorbed current in heating	А	22.55	25.19	27.83
1ax absorbed current – Heating	А	65.57	68.77	71.97
ER energy class	W/W	4.85	4.75	4.67
COP energy class	W/W	5.78	5.59	5.43
EER energy class	W/W	5.84	5.80	5.76
COP energy class	W/W	6.11	6.10	6.01
Performance				
Vater flow (High)	m³/h	15.6	16.8	18.0
Sound pressure level (High)	dB(A)	55	55	56
Sound power level (High)	dB(A)	66	66	67
nstallation - Dimensions - Components				
Jnit Dimensions WxDxH	mm	(775×545×995)*3	(775×545×995)*3	(775x545x995)*3
ackaged unit dimensions WxDxH	mm	(840x625x1150)*2	(840×625×1150)*2	(840x625x1150)*2
let weight / Gross weight	Kg	516/549	516/549	516/549
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	3 INV	3 INV	3 INV
Refrigerant type		R410A	R410A	R410A
Pre-charged refrigerant qty.	Kg	6	6	6
ð Liquid side refrigerant pipe	mm	19.1	19.1	19.1
Ø Gas side refrigerant pipe	mm	31.8	31.8	31.8
Ø OU Oil Equalisation Pipe	mm	9.52	9.52	9.52
Maximum piping length	m	300	300	300
Max linear piping length Equivalent/Real)	m	150/120	150/120	150/120
Max height difference between IU and OU (*)	m	50/40	50/40	50/40
Nater/gas exchanger				
Гуре		Double - tube in tube	Double - tube in tube	Double - tube in tube
1aterial		Copper/steel	Copper/steel	Copper/steel
Vater input connection		DN32	DN32	DN32
Vater output connection		DN32	DN32	DN32
xchanger pressure drop	Кра	35+35+50	35+50+50	50+50+50
Connection type		Internal thread	Internal thread	Internal thread
flax water input pressure	Мра	1.6	1.6	1.6
Nater input temperature range (Cooling/	°C	7~45	7~45	7~45
Heating)		, 43	, 43	7 -43
Connectable Indoor Capacity Ratio	0/	50.472	50.170	50.470
ndoor / Outdoor Capacity Ratio	%	50-130	50-130	50-130
Maximum number of connectable IUs	No.	43	46	50

^{(*1) 50} m when the outdoor unit is above the indoor unit / 40 m when it is below

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27° C BS / 19° C BU and Outdoor temperature of 35° C BS / 24° C BU. In Heating mode, Indoor temperature of 20° C BS and Outdoor temperature of 20° C BS and Outdoor temperature of 20° C BU and Outdoor temperature of 20° C BS and Outdoor temperature of 20° C BS and Outdoor temperature of 20° C BU and Outdoor temperature of 20° C BS and Outdoor temperature of 20° C BU and Outdoor temperature of 20° C BU and Outdoor temperature of 20° C BS and Outdoor temperature of 20° C BU and Outdoor temperature of $20^{$

8-12HP AV08IMWEWA AV10IMWEWA AV12IMWEWA

		AV32IMWEWA	AV34IMWEWA	AV36IMWEWA
Model		AV10IMWEWA	AV10IMWEWA	AV12IMWEWA
4odel		AV10IMWEWA	AV12IMWEWA	AV12IMWEWA
		AV12IMWEWA	AV12IMWEWA	AV12IMWEWA
Commercial code				
Capacity				
Power Class	HP	32	34	36
Cooling	kW	89.5	95.0	100.5
leating	kW	100.5	106.5	112.5
lectrical Parameters				
ower supply	Ph-V/Hz	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)	3/380-400/50/60 (5 wires L1+L2+L3+N+T)
bsorbed power - Cooling	kW	19.70	21.40	23.10
1ax absorbed power - Cooling	kW	47.00	49.00	51.00
bsorbed current in cooling.	А	31.51	34.23	36.95
lax absorbed current - Cooling	А	75.17	78.37	81.57
bsorbed power – Heating	kW	19.40	21.40	23.40
lax absorbed power – Heating	kW	47.00	49.00	51.00
bsorbed current in heating	А	31.03	34.23	37.42
1ax absorbed current – Heating	А	75.17	78.37	81.57
ER energy class	W/W	4.54	4.44	4.35
COP energy class	W/W	5.18	4.98	4.81
EER energy class	W/W	5.74	5.72	5.69
COP energy class	W/W	5.99	5.97	5.96
erformance				
/ater flow (High)	m³/h	19.2	20.4	21.6
ound pressure level (High)	dB(A)	57	57	58
ound power level (High)	dB(A)	68	68	69
nstallation - Dimensions - Components				
Init Dimensions WxDxH	mm	(775x545x995)*3	(775x545x995)*3	(775×545×995)*3
ackaged unit dimensions WxDxH	mm	(840×625×1150)*2	(840×625×1150)*2	(840×625×1150)*2
let weight / Gross weight	Kg	516/549	516/549	516/549
Compressor type		DC Inverter Scroll	DC Inverter Scroll	DC Inverter Scroll
Quantity and type of the compressor	No.	3 INV	3 INV	3 INV
efrigerant type		R410A	R410A	R410A
re-charged refrigerant qty.	Kg	6	6	6
Liquid side refrigerant pipe	mm	19.1	19.1	19.1
ogas side refrigerant pipe	mm	31.8	31.8	38.1
OU Oil Equalisation Pipe	mm	9.52	9.52	9.52
1aximum piping length	m	300	300	300
1ax linear piping length Equivalent/Real)	m	150/120	150/120	150/120
Nax height difference between IU and OU (*)	m	50/40	50/40	50/40
Vater/gas exchanger				
уре		Double - tube in tube	Double - tube in tube	Double - tube in tube
1aterial		Copper/steel	Copper/steel	Copper/steel
later input connection		DN32	DN32	DN32
ater output connection		DN32	DN32	DN32
xchanger pressure drop	Кра	50+50+70	50+70+70	70+70+70
Connection type		Internal thread	Internal thread	Internal thread
1ax water input pressure	Мра	1.6	1.6	1.6
Vater input temperature range (Cooling/ leating)	°C	7~45	7~45	7~45
Connectable Indoor Capacity Ratio				
ndoor / Outdoor Capacity Ratio	%	50-130	50-130	50-130
Maximum number of connectable IUs	No.	53	56	59

^{(*1) 50} m when the outdoor unit is above the indoor unit / 40 m when it is below

The specifications indicated are obtained with the following test conditions: in Cooling mode, Indoor temperature of 27°C BS / 19°C BU and Outdoor temperature of 35°C BS / 24°C BU. In Heating mode, Indoor temperature of 20°C BS and Outdoor temperature of 7°C BS / 6°C BU

MRV

Indoor units

Cassette Smart Flow

4-Way Cassette compact

Wall Mounted

1-Way Cassette

2-Way Cassette

Ceiling-Floor

Duct

Floor console, built-in

Floor Console - exposed type

Floor Console - exposed type - 2-way air flow

Wide range of OPTIONAL controllers.

Indoor units are NOT equipped with controller.

AB072MRERA AB092MRERA AB122MRERA AB162MRERA AB182MRERA AB242MRERA

Panel with OPTIONAL presence sensor that can ONLY be managed with YR-E17, YR-HBS01, YR-E16B controllers

With this controller it is NOT possible to independently control the individual deflectors and it is NOT possible to manage the OPTIONAL presence sensor

With this controller it is NOT possible to independently control the individual deflectors and it is NOT possible to manage the OPTIONAL presence sensor

Optional controller Optional remote control Optional controller YR-E17 YR-HBS01 YR-E16B

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

- Exclusive 360° air diffusion system for a uniform radiation
- Independent control of the 4 diffusers
- 6 levels of positioning per individual deflector, 1296 possible combinations
- DC inverter fan motor
- 5 speeds ONLY selectable with wired controller YR-E16B, YR17 and with wireless controller YR-HBS01.
 With all other controllers, there are 3 speeds available.
- Standard condensate drain pump
- Preparation for fresh air input (pre-cut)

FUNCTION PANEL WITH PRESENCE SENSOR OPTIONAL

- With "Follow me or Avoid me" function, the sensor detects people's position by automatically managing the 4 deflectors independently so that they direct the air flow towards the people or direct away to avoid them, depending on the choice made from the controller.
- In the absence of person detection in the room, the unit automatically handles the
 temperature set on the controller by increasing or decreasing it (cooling or heating) by
 1°C per hour, for the next 4 hours. After 4 hours, the unit will continue to work with the
 new setting. This will allow a significant reduction in energy consumption. A subsequent
 detection of people, will revert the temperature back to the initial setting. A detection
 during the 4 hours of "ECO" management will reassign the initial temperature setting.

Model		AB072MRERA	AB092MRERA	AB122MRERA	AB162MRERA	AB182MRERA	AB242MRERA
Commercial code		25014505J	25014515J	25014525J	25014545J	25014555J	25014565J
Capacity							
Cooling	kW	2.2	2.8	3.6	4.5	5.6	7.1
Heating	kW	2.5	3,2	4	5	6.3	8
Electrical Parameters							
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation							
Air flow (High)	m³/h	1000	1000	1000	1000	1000	1380
Sound pressure level (A/M/B)	dB(A)	30/27/25	30/27/25	30/27/25	32/29/27	33/30/29	35/34/31
Installation – Dimensions							
Unit Dimensions WxDxH	mm	840x840x183	840x840x183	840x840x183	840x840x183	840x840x183	840x840x204
Packaged unit dimensions WxDxH	mm	983x983x268	983x983x268	983x983x268	983x983x268	983x983x268	983x983x290
Net weight / Gross weight	Kg	28/31	28/31	28/31	28/31	28/31	29/32
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	9.52
Ø Gas side refrigerant pipe	mm	9.52	9.52	12.7	12.7	12.7	15.88
Panel							
Model		PB-950KB	PB-950KB	PB-950KB	PB-950KB	PB-950KB	PB-950KB
Model with optional presence sensor		PB-950MB	PB-950MB	PB-950MB	PB-950MB	PB-950MB	PB-950MB
Dimensions WxDxH	mm	950x950x50	950x950x50	950x950x50	950x950x50	950x950x50	950x950x50
Packaging dimensions WxDxH	mm	1013×1025×123	1013×1025×123	1013×1025×123	1013×1025×123	1013×1025×123	1013×1025×123
Net weight / Gross weight	Kg	6.5/9	6.5/9	6.5/9	6.5/9	6.5/9	6.5/9

Panel with OPTIONAL presence sensor that can ONLY be managed with YR-E17, YR-HBS01, YR-E16B controllers

Optional controller

With this controller it is NOT possible to independently control the individual deflectors and it is NOT possible to manage the OPTIONAL presence

Optional controller HW-BA101ABT

With this controller it is NOT possible to independently control the individual deflectors and it is NOT possible to manage the **OPTIONAL** presence sensor

Optional controller Optional remote control Optional controller YR-E17

YR-HBS01 YR-E16B

- HW-BA116ABK
- Exclusive 360° air diffusion system for uniform radiation
- · Independent control of the 4 diffusers
- 6 positioning levels per single deflector, 1296 possible combinations
- DC inverter fan motor
- 5 speeds ONLY selectable with wired controller YR-E16B, YR17 and with wireless controller YR-HBS01. With all other controllers, there are 3 speeds available.
- · Standard condensate drain pump
- Preparation for fresh air input (pre-cut)

FUNCTION PANEL WITH PRESENCE SENSOR OPTIONAL

- With "Follow me or Avoid me" function, the sensor detects people's position by automatically managing the 4 deflectors independently so that they direct the air flow towards the people or direct away to avoid them, depending on the choice made from the controller.
- In the absence of person detection in the room, the unit automatically handles the temperature set on the controller by increasing or decreasing it (cooling or heating) by 1°C per hour, for the next 4 hours. After 4 hours, the unit will continue to work with the new setting. This will allow a significant reduction in energy consumption. A subsequent detection of people, will revert the temperature back to the initial setting. A detection during the 4 hours of "ECO" management will reassign the initial temperature setting.

Model		AB282MRERA	AB302MRERA	AB382MRERA	AB482MRERA	AB602MRERA
Commercial code		25014576J	25014577J	25014585J	25014595J	25014597J
Capacity						
Cooling	kW	8	9	11.2	14	16
Heating	kW	9	10	12.5	16	18
Electrical Parameters						
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation						
Air flow (High)	m³/h	1380	2050	2050	2100	2100
Sound pressure level (A/M/B)	dB(A)	37/35/31	37/35/31	37/35/31	44/40/36	44/40/36
Installation – Dimensions						
Unit Dimensions WxDxH	mm	840x840x204	840x840x246	840x840x246	840x840x288	840x840x288
Packaged unit dimensions WxDxH	mm	983x983x290	983×983×331	983x983x331	983x983x373	983x983x373
Net weight / Gross weight	Kg	29/32	34/37	34/37	35/38	35/38
Ø Liquid side refrigerant pipe	mm	9.52	9.52	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	15.88	15.88	15.88	15.88	15.88
Panel						
Model		PB-950KB	PB-950KB	PB-950KB	PB-950KB	PB-950KB
Model with optional presence sensor		PB-950MB	PB-950MB	PB-950MB	PB-950MB	PB-950MB
Dimensions WxDxH	mm	950x950x50	950x950x50	950x950x50	950x950x50	950x950x50
Packaging dimensions WxDxH	mm	1013×1025×123	1013×1025×123	1013×1025×123	1013×1025×123	1013×1025×123
Net weight / Gross weight	Kg	6.5/9	6.5/9	6.5/9	6.5/9	6.5/9

INDOOR UNITS

AB052MCERA(M) AB072MCERA(M) AB092MCERA(M) AB122MCERA(M) AB162MCERA(M) AB182MCERA(M)

With this controller it is not possible to independently control the individual louvres

Optional controller HW-BA101ABT With this controller it is not possible to independently control the individual louvres

Optional controller Optional remote control Optional controller YR-E17 YR-HBS01 YR-E16B

- Design panel with max 620x620 dimensions, maximum compatibility with module ceilings
- Independent control of the 4 diffusers
- 6 positioning levels per single deflector, 1296 possible combinations
- DC inverter fan motor
- 5 speeds ONLY selectable with wired controller YR-E16B, YR17 and with wireless controller YR-HBS01. With all other controllers, there are 3 speeds available.
- Standard condensate drain pump
- Preparation for fresh air input (pre-cut)

Model		AB052MCERA(M)	AB072MCERA(M)	AB092MCERA(M)	AB122MCERA(M)	AB162MCERA(M)	AB182MCERA(M)
Commercial code		2501450AJ	2501450BJ	2501451AJ	2501452AJ	2501454AJ	2501455AJ
		2501450AJ	2501450BJ	2501451AJ	2501452AJ	2501454AJ	2501455AJ
Capacity							
Cooling	kW	1.5	2.2	2.8	3.6	4.5	5.6
Heating	kW	1.7	2.5	3,2	4.0	5.0	6.3
Electrical Parameters							
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation							
Air flow (High)	m³/h	650	700	700	700	700	700
Sound pressure level (A/M/B)	dB(A)	31/29/28	32/30/29	32/30/29	32/30/29	33/30/29	33/30/29
Sound power level (A/M/B)	dB(A)	45/43/42	46/44/43	46/44/43	46/44/43	47/44/43	47/44/43
Installation - Dimensions							
Unit Dimensions WxDxH	mm	570x570x260	570x570x260	570x570x260	570x570x260	570x570x260	570×570×260
Packaged unit dimensions WxDxH	mm	718×680×380	718×680×380	718x680x380	718×680×380	718×680×380	718×680×380
Net weight / Gross weight	Kg	17/21	17/21	17/21	19/23	19/23	19/23
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	6.35
Ø Gas side refrigerant pipe	mm	9.52	9.52	9.52	12.7	12.7	12.7
Panel							
Model		PB-620KB	PB-620KB	PB-620KB	PB-620KB	PB-620KB	PB-620KB
Dimensions WxDxH	mm	620×620×60	620x620x60	620x620x60	620x620x60	620x620x60	620×620×60
Packaging dimensions WxDxH	mm	660×660×115	660×660×115	660x660x115	660×660×115	660×660×115	660x660x115
Net weight / Gross weight	Kg	3.1/4.8	3.1/4.8	3.1/4.8	3.1/4.8	3.1/4.8	3.1/4.8

AB052MCERA AB072MCERA AB092MCERA AB122MCERA AB162MCERA AB182MCERA(C)

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

Optional remote control YR-HD01

Optional controller YR-E16B

- Aesthetic Panel 700x700
- Preparation for fresh air input (pre-cut)
- Standard condensate drain pump
- Silent operation

Model		AB052MCERA	AB072MCERA	AB092MCERA	AB122MCERA	AB162MCERA	AB182MCERA(C)
Commercial code		25014501J	25014502J	25014512J	25014522J	25014542J	25014551J
Capacity							
Cooling	kW	1.5	2.2	2.8	3.6	4.5	5.6
Heating	kW	1.7	2.5	3,2	4	5	6.3
Electrical Parameters							
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation							
Air flow (High)	m³/h	650	700	700	700	700	700
Sound pressure level (A/M/B)	dB(A)	31/29/28	32/30/29	32/30/29	32/30/29	33/30/29	33/30/29
Sound power level (A/M/B)	dB(A)	45/43/42	46/44/43	46/44/43	46/44/43	47/44/43	47/44/43
Installation – Dimensions							
Unit Dimensions WxDxH	mm	570/570/260	570/570/260	570x570x260	570x570x260	570x570x260	570×570×260
Packaged unit dimensions WxDxH	mm	718/680/380	718/680/380	718x680x380	718x680x380	718x680x380	718×680×380
Net weight / Gross weight	Kg	17/21	17/21	17/21	19/23	19/23	19/23
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	6.35
Ø Gas side refrigerant pipe	mm	9.52	9.52	9.52	12.7	12.7	12.7
Panel							
Model		PB-700IB	PB-700IB	PB-700IB	PB-700IB	PB-700IB	PB-700IB
Dimensions WxDxH	mm	700×700×60	700×700×60	700x700x60	700x700x60	700×700×60	700x700x60
Packaging dimensions WxDxH	mm	740×740×115	740×740×115	740×740×115	740×740×115	740×740×115	740x740x115
Net weight / Gross weight	Kg	2.8/4.5	2.8/4.5	2.8/4.5	2.8/4.5	2.8/4.5	2.8/4.5

AB182MCERA AB242MCERA AB282MCERA AB302MCERA AB382MCERA AB482MCERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

Optional remote control YR-HD01

Optional controller YR-E16B

- Linear and compact panel design
- Preparation for fresh air input (pre-cut)
- Standard condensate drain pump
- Preparation for additional air delivery from unit body

Model		AB182MCERA	AB242MCERA	AB282MCERA	AB302MCERA	AB382MCERA	AB482MCERA
Commercial code		25014553J	25014567J	25014572J	25014575J	25014583J	25014593J
Capacity							
Cooling	kW	5.6	7.1	8	9	11.2	14
Heating	kW	6.3	8	9	10.0	12.5	16.0
Electrical Parameters							
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation							
Air flow (High)	m³/h	1200	1200	1200	1800	1800	1800
Sound pressure level (A/M/B)	dB(A)	34/32/30	35/34/31	37/35/31	37/35/31	37/35/31	42/39/35
Sound power level (A/M/B)	dB(A)	48/46/44	49/48/45	51/49/45	51/49/45	51/49/45	56/53/49
Installation – Dimensions							
Unit Dimensions WxDxH	mm	840x840x240	840x840x240	840x840x240	840x840x295	840x840x295	840x840x295
Packaged unit dimensions WxDxH	mm	930x930x330	930x930x330	930x930x330	930x930x330	930x930x330	930x930x330
Net weight / Gross weight	Kg	30/32.5	30/32.5	30/32.5	38/40	38/40	38/40
Ø Liquid side refrigerant pipe	mm	6.35	9.52	9.52	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	12.7	15.88	15.88	15.88	15.88	15.88
Panel							
Model		PB-950JB	PB-950JB	PB-950JB	PB-950JB	PB-950JB	PB-950JB
Dimensions WxDxH	mm	950x950x60	950x950x60	950x950x60	950x950x60	950x950x60	950x950x60
Packaging dimensions WxDxH	mm	992x992x115	992x992x115	992x992x115	992x992x115	992x992x115	992x992x115
Net weight / Gross weight	Kg	6/7.5	6/7.5	6/7.5	6/7.5	6/7.5	6/7.5

AS052MNERAB AS072MNERAB AS092MNERAB AS122MNERAB AS162MNERA AS182MNERA AS242MNERA AS282MNERA AS302MNERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

Optional remote control YR-HD01

Optional controller YR-E16B

- Compact, linear design with dimmable information display
- Silenced EEV modulation valve
- DC inverter fan motor
- 5 speeds only selectable with wired controller YR-E16B and YR-E17. With all other controllers, there are 3 speeds available.

Model		AS052MNFRAR	AS072MNFRAR	AS092MNFRAR	AS122MNFRAR	AS162MNERA	AS182MNFRA	AS242MNFRA	AS282MNFRA	AS302MNFRA
Commercial code		25011000J	25011004J	25011014J	25011024J	25011044J	25011054J	25011064J	25011070J	25011084J
Capacity										
Cooling	kW	1.5	2.2	2.8	3.6	4.5	5.6	7.1	8.0	9.0
Heating	kW	1.7	2.5	3,2	4	5	6.3	8	9	10
Electrical Parameters										
Power supply	Ph-V/Hz				1/	/220-230/50/6	50			
Ventilation										
Air flow (A/M/B)	m³/h	500/430/370	550/480/420	600/530/470	630/560/500	800/720/650	920/800/720	1010/920/800	1500/1400/1300	1600/1500/1400
Sound pressure level (A/M/B)	dB(A)	33/31/29	35/31/29	36/31/29	37/33/29	39/36/34	40/39/35	44/40/36	48/43/40	49/44/41
Sound power level (A/M/B)	dB(A)	49/46/41	50/47/42	52/48/44	54/51/50	56/53/51	57/54/52	58/56/54	60/57/53	61/58/54
Installation – Dimensions										
Unit Dimensions WxDxH	mm	855x200x280	855x200x280	855x200x280	855x200x280	1115x243x336	1115x243x336	1115×243×336	1316x270x365	1316x270x365
Packaged unit dimensions WxDxH	mm	954x279x355	954x279x355	954x279x355	954x279x355	1206x342x418	1206x342x418	1206x342x418	1403x384x463	1403x384x463
Net weight / Gross weight	Kg	10.5/12.7	10.5/12.7	10.5/12.7	10.5/12.7	16.5/20.1	16.5/20.1	16.5/20.1	21.5/26.0	21.5/26.0
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	6.35	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	9.52	9.52	9.52	12.7	12.7	12.7	15.88	15.88	15.88

Motorised panel Open: H 370 x D 263 (mm) Closed: H 318 x D 212 (mm) AS20S2SD1FA AS25S2SD1FA AS35S2SD1FA AS42S2SD1FA

Optional controller HW-BA116ABK Requires adapter WK-B

Optional controller HW-BA101ABT Requires adapter WK-B

Optional wired controller YR-E17 Requires adapter WK-B

Optional controller YR-E16B Requires adapter WK-B

MS3-036A valve For 1:3 connection

- · Design wall unit with motorised panel
- Silent operation, min 15 dBAS
- · External thermal expansion valve
- Presence sensor to optimise consumption and air flow
- Standard Wi-Fi for remote management via Haier APP
- Unit display dimmable from remote controller
- 3D ventilation
- Easier installation thanks to the removable bottom panel that allows direct access to the pipes
- This unit works exclusively in combination with the MS1-036A thermal expansion valves for individual connection, or the MS3-036A to make a group of 3 independent units.

The maximum connection distance between the MS external valve and the indoor unit is 15 meters.

Presence sensor: Detects room crowding and activates power management when no movement is detected.

By activating the feature from the remote controller, the sensor allows you to automatically adjust the direction of the airflow, to avoid or follow the person inside the room.

 $\label{light} \textbf{Light sensor}. This system detects the change of sunlight or artificial light within environments, activating night mode to reduce consumption.$

M. I.I.		ACCOCCCDAEA	ACOSCOCDATA	ACZECOCDAEA	AC40C0CD4EA
Model		AS20S2SD1FA	AS25S2SD1FA	AS35S2SD1FA	AS42S2SD1FA
Commercial code		2501300S3	2501301S3	2501302S3	2501305S3
Capacity					
Cooling	kW	2.0	2.6	3.5	4.2
Heating	kW	2.6	3,2	4.2	5.0
Electrical Parameters					
Power supply	Ph-V/Hz		1/220-2	230/50/60	
Ventilation					
Air flow (A/M/B)	m³/h	650	650	700	800
Sound pressure level (A/M/B)	dB(A)	54	54	56	58
Sound power level (A/M/B)	dB(A)	34/29/25/15	34/29/25/15	35/30/26/16	37/35/30/16
Installation – Dimensions					
Unit Dimensions WxDxH	mm	980x212x318	980x212x318	980x212x318	980x212x318
Packaged unit dimensions WxDxH	mm				
Net weight / Gross weight	Kg	11.8	11.8	11.8	11.8
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35
Ø Gas side refrigerant pipe	mm	9.52	9.52	9.52	9.52

FLEXIS-MW

AS20S2SF1FA-MW AS25S2SF1FA-MW AS35S2SF1FA-MW AS50S2SF1FA-MW AS71S2SF1FA-MW

FLEXIS-MB

AS20S2SF1FA-MB AS25S2SF1FA-MB AS35S2SF1FA-MB AS50S2SF1FA-MB AS71S2SF1FA-MB

Optional controller HW-BA116ABK Requires adapter WK-B

Optional controller HW-BA101ABT Requires adapter WK-B

Optional wired controller YR-E17 Requires adapter WK-B

Optional controller YR-E16B Requires adapter WK-B

MS3-036A valve For 1:3 connection

- Silent operation, min 16 dBA (size 20-25)
- External thermal expansion valve
- ECO presence sensor to optimise consumption and air flow
- Standard Wi-Fi for remote management via Haier APP
- Unit display dimmable from remote controller
- 3D ventilation
- Easier installation thanks to the removable bottom panel that allows direct access to the pipes
- This unit works exclusively in combination with the MS1-036A thermal expansion valves for individual connection, or the MS3-036A to make a group of 3 independent units.

The maximum connection distance between the MS external valve and the indoor unit is 15 meters.

ECO SENSOR

Presence sensor, detects room crowding and activates power saving feature when it does not detect movement. By activating the feature from the remote controller, the sensor allows you to automatically adjust the direction of the airflow, to avoid or follow the person inside the room.

Model FLEXIS-MW		AS20S2SF1FA-MW	AS25S2SF1FA-MW	AS35S2SF1FA-MW	AS50S2SF1FA-MW	AS71S2SF1FA-MW
Commercial code		2501300X2	2501301X2	2501302X2	2501305X2	2501306X2
Model FLEXIS-MB		AS20S2SF1FA-MB	AS25S2SF1FA-MB	AS35S2SF1FA-MB	AS50S2SF1FA-MB	AS71S2SF1FA-MB
		2501300W2	2501301W2	2501302W2	2501305W2	2501306W2
Capacity						
Cooling	kW	2.0	2.6 (0.8 - 3.2)	3.5 (1.0 - 4.0)	5.2 (1.4 - 7.0)	7.0 (2.2 - 7.5)
Heating	kW	2.5	3.2 (0.8 - 4.2)	4.2 (1.0 - 5.2)	6.0 (1.4 - 6.9)	8.0 (2.4 - 8.5)
Electrical Parameters						
Power supply	Ph-V/Hz			1/220-230/50/60		
Ventilation						
Air flow (A/M/B)	m³/h	600	600	650	900	1100
Sound pressure level (A/M/B)	dB(A)	38/32/25/16	38/32/25/16	39/33/26/17	41/37/33/28	47/43/37/30
Sound power level (A/M/B)	dB(A)	53	53	55	57	60
Installation – Dimensions						
Unit Dimensions WxDxH	mm	866x196x300	866x196x300	866×196×300	1010x222x327	1126x232x343
Packaged unit dimensions WxDxH	mm					
Net weight	Kg	9.5	9.5	9.5	11.9	15.2
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	9.52
Ø Gas side refrigerant pipe	mm	9.52	9.52	9.52	12.7	15.88

AS20S2SF2FA AS25S2SF2FA AS35S2SF2FA AS50S2SF2FA AS71S2SF2FA

Optional controller HW-BA116ABK Requires adapter WK-B

Optional controller HW-BA101ABT Requires adapter WK-B

Optional wired controller YR-E17 Requires adapter WK-B

Optional controller YR-E16B Requires adapter WK-B

MS1-036A valve For 1:1 connection

MS3-036A valve For 1:3 connection

- Wall unit with classic and linear design
- Silent operation, min 16 dBA (size 20-25)
- External thermal expansion valve
- Unit display dimmable from remote controller
- Easier installation removable bottom panel allows easy access to the pipes.
- 3D ventilation
- This unit works exclusively in combination with the MS1-036A thermal expansion valves for individual connection, or the MS3-036A to make a group of 3 independent units.

The maximum connection distance between the MS external valve and the indoor unit is 15 meters.

Model		AS20S2SF2FA	AS25S2SF2FA	AS35S2SF2FA	AS50S2SF2FA	AS71S2SF2FA
Commercial code		2501300U2	2501301U2	2501302U2	2501305U2	2501306U2
Capacity						
Cooling	kW	2	2.6	3.5	5.2	7
Heating	kW	2.5	3,2	4.2	6	8
Electrical Parameters						
Power supply	Ph-V/Hz			1/220-230/50/60		
Ventilation						
Air flow (A/M/B)	m³/h	600	600	650	900	1100
Sound pressure level (A/M/B)	dB(A)	53	53	55	57	60
Sound power level (A/M/B)	dB(A)	38/32/25/16	38/32/25/16	39/33/26/22	41/37/33/31	47/43/37/33
Installation – Dimensions						
Unit Dimensions WxDxH	mm	800x280x550	800x280x550	800x280x550	800x280x550	800x280x550
Packaged unit dimensions WxDxH	mm					
Net weight / Gross weight	Kg	29	29	31.5	37.8	49
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	9.52
Ø Gas side refrigerant pipe	mm	9.52	9.52	9.52	12.7	15.88

AB052MAERA AB072MAERA AB092MAERA AB122MAERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

Optional remote control YR-HD01

Optional controller YR-E16B

- Modern, thin and linear design panel
- Automatic opening and closing of air discharge and air intake louvres
- 3D ventilation
- DC inverter fan motor
- 5 speeds only selectable with wired controller YR-E16B and YR-E17. With all other controllers, there are 3 speeds available.
- Quiet and thin
- Standard intake filter
- Standard condensate drain pump

Model		AB052MAERA	AB072MAERA	AB092MAERA	AB122MAERA
Commercial code		25014600J	25014604J	25014610J	25014620J
Capacity					
Cooling	kW	1.5	2.2	2.8	3.6
Heating	kW	1.7	2.5	3,2	4.0
Electrical Parameters					
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation					
Air flow (High)	m³/h	450	480	500	550
Sound pressure level (A/M/B)	dB(A)	35/32/29	36/33/30	37/34/31	38/35/32
Sound power level (A/M/B)	dB(A)	48/45/42	49/46/43	50/47/44	51/48/45
nstallation – Dimensions					
Jnit Dimensions WxDxH	mm	875×505×185	875×505×185	875x505x185	875x505x185
Packaged unit dimensions WxDxH	mm	1028x581x270	1028×581×270	1028x581x270	1028x581x270
Net weight / Gross weight	Kg	14.2/17.7	14.2/17.7	14.2/17.7	14.2/17.7
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35
Ø Gas side refrigerant pipe	mm	12.7	12.7	12.7	12.7
Panel					
Model		HMB-01A/T	HMB-01A/T	HMB-01A/T	HMB-01A/T
Dimensions WxDxH	mm	1050x550x125	1050x550x125	1050x550x125	1050x550x125
Packaging dimensions WxDxH	mm	1133x623x197	1133×623×197	1133x623x197	1133x623x197
Net weight / Gross weight	Kg	5.7/9.3	5.7/9.3	5.7/9.3	5.7/9.3

AB072MBERA AB092MBERA AB122MBERA AB162MBERA AB182MBERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controlle

optional remote control YR-HD01 (RE-02 remote control receiver)

Optional controller YR-E16B

- Thin design, only 220 mm high
- Standard condensate drain pump
- Silent operation

Model		AB072MBERA	AB092MBERA	AB122MBERA	AB162MBERA	AB182MBERA
Commercial code		25014403J	25014413J	25014423J	25014443J	25014453J
Capacity						
Cooling	kW	2.2	2.8	3.6	4.5	5.6
Heating	kW	2.5	3,2	4	5	6.3
Electrical Parameters						
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation						
Air flow (High)	m³/h	840	840	840	840	840
Sound pressure level (A/M/B)	dB(A)	42/37/33	42/37/33	42/37/33	44/39/34	44/39/34
Sound power level (A/M/B)	dB(A)	55/50/46	55/50/46	55/50/46	57/52/47	57/52/47
Installation - Dimensions						
Unit Dimensions WxDxH	mm	817x620x220	817x620x220	817x620x220	817x620x220	817x620x220
Packaged unit dimensions WxDxH	mm	1022x682x274	1022x682x274	1022x682x274	1022x682x274	1022x682x274
Net weight / Gross weight	Kg	21/23	21/23	21/23	21/23	21/23
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35
Ø Gas side refrigerant pipe	mm	9.52	9.52	12.7	12.7	12.7
Panel						
Model		P2B-1055IB	P2B-1055IB	P2B-1055IB	P2B-1055IB	P2B-1055IB
Dimensions WxDxH	mm	1055×680×68	1055x680x68	1055x680x68	1055x680x68	1055×680×68
Packaging dimensions WxDxH	mm	1097×707×136	1097×707×136	1097×707×136	1097×707×136	1097×707×136
Net weight / Gross weight	Kg	7/8	7/8	7/8	7/8	7/8

AC092MCERA AC122MCERA AC162MCERA AC182MCERA AC242MCERA AC282MFERA AC302MFERA AC382MFERA AC482MFERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

Optional remote control YR-HD01

Optional controller YR-E16B

- Flexible installation to floor or ceiling
- 3D ventilation, vertical and horizontal flow control
 Preparation for fresh air input: Ø 200 mm (only from size 282 to 482)
- High-efficiency, long-lasting air purification filters
- Input connections from different directions

Model		AC092MCERA	AC122MCERA	AC162MCERA	AC182MCERA	AC242MCERA	AC282MFERA	AC302MFERA	AC382MFERA	AC482MFERA
Commercial code		25014010J	25014012J	25014046J	25014056J	25014066J	25014072J	25014074J	25014082J	25014092J
Capacity										
Cooling	kW	2.8	3.6	4.5	5.6	7.1	8	9	11.2	14
Heating	kW	3,2	4	5	6.3	8	9	10	12.5	16
Electrical Parameters										
Power supply	Ph-V/Hz									
Ventilation										
Air flow (High)	m³/h	800	800	800	800	800	2040	2040	2040	2040
Sound pressure level (A/M/B)	dB(A)	38/35/33	38/35/33	40/37/35	40/37/35	40/37/35	43/40/38	43/40/38	46/42/38	46/42/38
Sound power level (A/M/B)	dB(A)	51/48/46	51/48/46	53/50/48	53/50/48	53/50/48	56/53/51	56/53/51	59/55/51	59/55/51
Installation – Dimensions										
Unit Dimensions WxDxH	mm			990x655x199)			1580×7	00x240	
Packaged unit dimensions WxDxH	mm			983x983x268	3			1720x8	00x330	
Net weight / Gross weight	Kg	28.3/34.3	28.3/36.4	28.3/36.4	28.3/36.4	28.3/36.4	50/57	50/27	54/31	54/31
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	9.52	9.52	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	9.52	12.7	12.7	12.7	15.88	15.88	15.88	15.88	15.88

Available From April 2020

AC092MDERA
AC122MDERA
AC162MDERA
AC182MDERA
AC242MDERA
AC282MDERA
AC302MDERA
AC382MDERA
AC482MDERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

Optional remote control YR-HD01

Optional controller YR-E16B

- New design, subtle and harmonious
- DC inverter fan motor
- 5 speeds only selectable with wired controller YR-E16B and YR-E17. With all other controllers, there are 3 speeds available.
- 3D ventilation with independent right and left wing group
- Outstanding installation height the 14kW model can be installed up to 4.2 m high still ensuring adequate air distribution in the environment

Model		AC092MDERA	AC122MDERA	AC162MDERA	AC182MDERA	AC242MDERA	AC282MDERA	AC302MDERA	AC382MDERA	AC482MDERA
Commercial code		25014011J	25014013J	25014047J	25014057J	25014067J	25014073J	25014075J	25014083J	25014093J
Capacity										
Cooling	kW	2.8	3.6	4.5	5.6	7.1	8	9	11.2	14
Heating	kW	3,2	4	5	6.3	8	9	10	12.5	16
Electrical Parameters										
Power supply	Ph-V/Hz		1/220-230/50/60							
Ventilation										
Air flow (High)	m³/h	820	820	950	950	1420	1570	1570	2110	2110
Sound pressure level (A/M/B)	dB(A)	38/36/34	38/36/34	42/38/35	42/38/35	46/44/41	47/44/41	47/44/41	50/46/43	50/46/43
Sound power level (A/M/B)	dB(A)	52/50/47	52/50/47	55/51/48	55/51/48	60/58/54	61/58/55	61/58/55	63/60/57	63/60/57
Installation – Dimensions										
Unit Dimensions WxDxH	mm		100×68	30x230			1325×680×230)	1650×6	80×230
Packaged unit dimensions WxDxH	mm		1100×7	79x305		:	1425×779×305	5	1750x7	79×305
Net weight / Gross weight	Kg	27.9/33.6	27.9/33.6	27.9/33.6	27.9/33.6	35.8/42.1	35.8/42.1	35.8/42.1	43.5/50.5	43.5/50.5
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	9.52	9.52	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	9.52	12.7	12.7	12.7	15.88	15.88	15.88	15.88	15.88

AD052MSERA(D) AD072MSERA(D) AD092MSERA(D) AD122MSERA(D) AD162MSERA(D)

AD182MSERA(D) AD242MSERA(D)

Optional controller HW-BA116ABK With this controller it is NOT possible to modify the static pressure values PA of the fan

Optional controller YR-E17

optional remote control YR-HD01 (in combination with the RE-02 receiver, not necessary if the panel kit is used)

Optional controller YR-E16B

- Ideal for bedrooms, hotel rooms and quiet environments
- Extremely thin, only 185 mm
- Preparation for fresh air input
- Standard condensate drain pump
- Intake of lower or rear air by moving the panel as standard
- Silent operation
- Designed for free-mount installation without duct, with a standard prevalence of 0 PA. You can increase static pressure to 15 or 30 PA by using this unit with the flush wired controllers: HW-BA101ABT, YR-E17, YR-E16B.
- Possibility of optional functional aesthetic control kit panel
- DC inverter fan motor
- 5 speeds only selectable with wired controller YR-E16B and YR-E17. With all other controllers, there are 3 speeds available.

Model		AD052MSERA(D)	AD072MSERA(D)	AD092MSERA(D)	AD122MSERA(D)	AD162MSERA(D)	AD182MSERA(D)	AD242MSERA(D)
Commercial code		2501180DJ	2501180AJ	2501181AJ	2501182AJ	2501184AJ	2501185AJ	2501186AJ
Capacity								
Cooling	kW	1.5	2.2	2.8	3.6	4.5	5.6	7.1
Heating	kW	1.7	2.5	3,2	4	5	6.3	8.0
Electrical Parameters								
Power supply	Ph-V/Hz				1/220-230/50/60)		
Ventilation								
Air flow (A/M/B)	m³/h	430/370/310	480/420/360	480/410/350	550/430/370	600/540/460	800/690/580	930/850/750
Sound pressure level (A/M/B)	dB(A)	26/22/19	27/23/20	27/23/20	30/27/24	32/29/26	33/30/27	36/33/30
Sound power level (A/M/B)	dB(A)	40/36/33	41/37/34	41/37/34	44/41/38	46/43/40	47/44/41	50/47/43
Installation – Dimensions								
Unit Dimensions WxDxH	mm	850x420x185	850x420x185	850x420x185	850x420x185	850/420/185	1170x420x185	1170x420x185
Packaged unit dimensions WxDxH	mm	1045×540×270	1045×540×270	1045x540x270	1045×540×270	1045x540x270	1365×540×270	1365×540×270
Net weight / Gross weight	Kg	16.5/21.5	17.5/22.5	17.5/22.5	17.5/22.5	18.5/23.5	22.2/28.2	24/30
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	6.35	9.52
Ø Gas side refrigerant pipe	mm	9.52	9.52	9.52	12.7	12.7	12.7	15.88
Static pressure (Standard / Max)	Pa	0/30	0/30	0/30	0/30	0/30	0/30	0/30
Panel								
Model			With	P1B-890IA/D n Display and Rece	eiver			210IA/D and Receiver
Commercial code			With	2505451A2 n Display and Rece	eiver			451F2 and Receiver
Dimensions WxDxH (delivery deflector)	mm			890×190×100			1210×1	90x100
Dimensions WxDxH (intake panel with filter)	mm			890x290.5x32.4			1210×29	0.5x32.4
Packaging dimensions WxDxH	mm			938x335x220			1258x335x220	1258x335x220
Net weight / Gross weight	Kg	4/5	4/5	4/5	4/5	4/5	5/6	5/6

On the side of the unit there is a circular flange fitting, with 120mm diameter as standard to connect a hose for primary air entry.

Normally this flange is closed and fixed backwards, if not used.

AD052MJERAB AD072MJERAB AD092MJERAB AD122MJERAB AD162MJERAB AD182MJERAB AD242MJERAB AD282MJERAB AD302MJERA AD382MJERA AD482MJERA

Optional controller HW-BA101ABT

Optional controller YR-E17

optional remote control YR-HD01 (RE-02 remote control receiver)

Optional controller YR-E16B

- Compact Ducted Medium Pressure
- Static pressure fan 50 / 100 PA.
 - The standard static pressure is 50 PA.
- It is possible to increase the PA from 50 to 100 by only using wired controller models HW-BA101ABT, YR-E17, YR-E16B. With all other controllers, the pressure remains fixed at 50 PA.
- Standard condensate drain pump

Model		AD052MJERA	AD072MJERA	AD092MJERA	AD122MJERA	AD162MJERA	AD182MJERA	AD242MJERA	AD282MJERA	AD302MJERA	AD382MJERA	AD482MJERA
Commercial code		25011804J	25011806J	25011816J	25011826J	25011846J	25011856J	25011864J	25011876J	25011878J	25011880J	25011890J
Capacity												
Cooling	kW	1.5	2.2	2.8	3.6	4.5	5.6	7.1	8	9	11.2	14
Heating	kW	1.7	2.5	3,2	4	5	6.3	8	9	10	13	16.3
Electrical Parameters												
Power supply	Ph-V/Hz	1/220-230/50/60										
Ventilation												
Air flow (A/M/B)	m³/h	585/495/408	585/495/408	585/495/408	585/495/408	750/652/566	920/805/699	1230/1090/950	1230/1090/950	1500/1180/930	1700/1300/900	2000/1700/1250
Sound pressure level (A/M/B)	dB(A)	35/33/31	35/33/31	35/33/31	35/33/31	35/33/31	36/34/32	38/36/34	42/39/35	42/38/34	42/39/35	43/40/35
Sound power level (A/M/B)	dB(A)	39/37/35	39/37/35	39/37/35	39/37/35	39/37/35	40/38/36	42/40/38	46/43/39	46/42/38	46/33/39	47/44/39
Installation – Dimensions												
Unit Dimensions WxDxH	mm	750x720x250	750x720x250	750x720x250	750x720x250	750x720x250	1050x720x250	1050x720x250	1050x720x250	1100x700x248	1500x700x248	1500x700x248
Packaged unit dimensions WxDxH	mm	920x820x340	920x820x340	920x820x340	920x820x340	920x820x340	1170x860x340	1170x860x340	1170x860x340	1332x835x280	1698x857x305	1698x857x305
Net weight / Gross weight	Kg	24.1/28.3	24.1/28.3	24.1/28.3	24.1/28.3	25.9/30.1	30.5/38.0	33.1/40.6	33.1/40.6	39.4/45.4	48.3/56.5	51.3/59.5
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	6.35	9.52	9.52	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	12.7	12.7	12.7	12.7	12.7	12.7	15.88	15.88	15.88	15.88	15.88
Static pressure (Standard / Max)	Pa	50/100	50/100	50/100	50/100	50/100	50/100	50/100	50/100	50/100	50/100	50/100

AD182MHERA AD242MHERA AD282MHERA AD302MHERA AD382MHERA AD482MHERA

AD722MHERA AD962MHERA

Optional controller HW-BA101ABT

Optional controller

optional remote control YR-HD01 (RE-02 remote control receiver)

Optional controller YR-E16B

- Flexible and simple ductwork
- Simple maintenance
- Static pressure varies from 100 to 200 Pa using included booster cable.
- Not equipped with condensate drain pump
- 3 speeds + booster

Model		AD182MHERA	AD242MHERA	AD282MHERA	AD302MHERA	AD382MHERA	AD482MHERA	AD722MHERA	AD962MHERA
Commercial code		25011752J	25011766J	25011772J	25011774J	25011782J	25011792J	25011795J	25011797J
Capacity									
Cooling	kW	5.6	7.1	8	9	11.2	14	22.6	28
Heating	kW	6.3	8	9	10	12.5	16	25	31
Electrical Parameters									
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation									
Air flow (A/M/B)	m³/h	900/800/700	900/800/700	900/800/700	1560/1470/1390	1600/1500/1400	2100/2000/1900	4050/3250/2900	4050/3250/2900
Sound pressure level (A/B)	dB(A)	42/40	42/40	42/40	45/40	45/40	45/40	54/49	54/49
Sound power level (A/B)	dB(A)	55/53	55/53	55/53	58/53	58/53	58/53	67/62	67/62
Installation – Dimensions									
Unit Dimensions WxDxH	mm	975x876x360	975x876x360	975x876x360	1355x876x360	1355x876x360	1355x876x360	1725x876x360	1725x876x360
Packaged unit dimensions WxDxH	mm	1050x945x405	1050x945x405	1050x945x405	1386x966x418	1386x966x418	1386x966x418	1830x990x530	1830x990x530
Net weight / Gross weight	Kg	48/58	48/58	48/58	62/77	62/77	62/77	92/100	92/100
Ø Liquid side refrigerant pipe	mm	6.35	9.52	9.52	9.52	9.52	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	12.7	15.88	15.88	15.88	15.88	15.88	25.4	25.4
Static pressure (Standard / Max)	Pa	100/196	100/196	100/196	100/196	100/196	100/196	100/196	100/196

AD072MQERA AD092MQERA AD122MQERA AD152MQERA AD182MQERA AD242MQERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

optional remote control YR-HD01 (RE-02 remote control receiver)

Optional controller YR-E16B

- Automatic system to maintain nominal air flow, offsetting duct losses of up to 200 PA
- Useful Static pressure up to 200 Pa with automatic selection.
- Maximum flexibility for the construction of air distribution ducts.
- Standard condensate drain pump
- DC inverter fan motor
- 5 speeds only selectable with wired controller YR-E16B and YR-E17. With all other controllers, there are 3 speeds available.

Model		AD072MQERA	AD092MQERA	AD122MQERA	AD152MQERA	AD182MQERA	AD242MQERA
Commercial code		25011700J	25011710J	25011720J	25011740J	25011750J	25011760J
Capacity							
Cooling	kW	2.2	2.8	3.36	4.5	5.6	7.1
Heating	kW	2.5	3,2	4.0	5.0	6.3	8.0
Electrical Parameters							
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation							
Air flow (A/M/B)	m³/h	500/410/360	600/510/450	700/580/500	780/680/600	900/780/600	1100/1020/920
Sound pressure level (A/M/B)	dB(A)	30/25/23	30/25/23	32/29/26	32/29/26	32/29/26	33/29/25
Installation – Dimensions							
Unit Dimensions WxDxH	mm	750x635x280	750x635x280	750x635x280	750x635x280	750x635x280	950x635x280
Packaged unit dimensions WxDxH	mm	917x736x325	917x736x325	917x736x325	917x736x325	917x736x325	1117×736×325
Net weight / Gross weight	Kg	29/34	29/34	29/34	29/34	29/34	34/39
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	9.52
Ø Gas side refrigerant pipe	mm	9.52	9.52	12.7	12.7	12.7	15.88
Static pressure (automatic selection)	Pa	50 std - max 200					

AD302MQERA AD362MQERA AD422MQERA AD482MQERA AD542MQERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller

optional remote control YR-HD01 (RE-02 remote control receiver)

Optional controller YR-E16B

- Automatic system to maintain nominal air flow, offsetting duct losses of up to 200 PA
- Useful Static pressure up to 200 Pa with automatic selection.
- Maximum flexibility for the construction of air distribution ducts.
- Standard condensate drain pump.
- DC inverter fan motor
- 5 speeds only selectable with wired controller YR-E16B and YR-E17. With all other controllers, there are 3 speeds available.
- For sizes 36-42-48-54 it is possible to fix the PA pressure at 50-100-150-200 excluding automatic function. This setting can only be achieved with the wired controller YR-E17 and YR-E16B.

Model		AD302MQERA	AD362MQERA	AD422MQERA	AD482MQERA	AD542MQERA
Commercial code		25011770J	25011780J	25011790J	25011793J	25011798J
Capacity						
Cooling	kW	9.0	11.2	12.5	14.0	16.0
Heating	kW	10.0	12.5	14.0	16.0	18.0
Electrical Parameters						
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation						
Air flow (A/M/B)	m³/h	1500×1320×1220	1700×1510×1400	2000×1780×1620	2280×1920×1780	2280×1920×1780
Sound pressure level (A/M/B)	dB(A)	33/29/25	38/36/30	38/36/30	40/34/29	40/34/29
Installation – Dimensions						
Unit Dimensions WxDxH	mm	950x635x280	1370×740×280	1370×740×280	1370×740×280	1370x740x280
Packaged unit dimensions WxDxH	mm	1117×736×325	1535x839x362	1535x839x362	1535x839x362	1535x839x362
Net weight / Gross weight	Kg	34/39	54/62	54/62	54/62	54/62
Ø Liquid side refrigerant pipe	mm	9.52	9.52	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	15.88	15.88	15.88	15.88	15.88
Static pressure (Standard / Max)	Pa	50 std - max 200				

AE072MLERA AE092MLERA AE122MLERA AE162MLERA AE182MLERA AE242MLERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

optional remote control YR-HD01 (RE-02 remote control receiver)

Optional controller YR-E16B

- Compact and thin, only 220 mm depth
- Ideal for installation under window
- High-efficiency standard filter

Model		AE072MLERA	AE092MLERA	AE122MLERA	AE162MLERA	AE182MLERA	AE242MLERA
Commercial code		25018000J	25018010J	25018020J	25018040J	25018050J	25018060J
Capacity							
Cooling	kW	2.2	2.8	3.6	4.5	5.6	7.1
Heating	kW	2.5	3,2	4	5	6.3	8
Electrical Parameters							
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation							
Air flow (A/M/B)	m³/h	750/640/550	750/640/550	750/640/550	900/820/750	900/820/750	900/820/750
Sound pressure level (A/M/B)	dB(A)	38/35/33	38/35/33	40/37/35	40/37/35	42/39/36	42/39/36
Sound power level (A/M/B)	dB(A)	51/48/46	51/48/46	53/50/48	53/50/48	55/52/49	55/52/49
Installation – Dimensions							
Unit Dimensions WxDxH	mm	1116x221x624	1116x221x624	1116x221x624	1116x221x624	1116x221x624	1116x221x624
Packaged unit dimensions WxDxH	mm	1198x295x707	1198x295x707	1198x295x707	1198x295x707	1198x295x707	1198x295x707
Net weight / Gross weight	Kg	29/37	29/37	29/37	31/39	31/39	31/39
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	9.52
Ø Gas side refrigerant pipe	mm	9.52	9.52	12.7	12.7	12.7	15.88
Static pressure (Standard / Max)	Pa	0/30	0/30	0/30	0/30	0/30	0/30

AE072MLERA(V) AE092MLERA(V) AE122MLERA(V) AE162MLERA(V) AE182MLERA(V) AE242MLERA(V)

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller

optional remote control YR-HD01 (RE-02 remote control receiver)

Optional controller YR-E16B

- Vertical floor installation units
- Double intake filter for floor or suspended installation
- Multidirectional, manual-controlled delivery grill (not from the controller)

Model		AE072MLERA(V)	AE092MLERA(V)	AE122MLERA(V)	AE162MLERA(V)	AE182MLERA(V)	AE242MLERA(V)
Commercial code							
Capacity							
Cooling	kW	2.2	2.8	3.6	4.5	5.6	7.1
Heating	kW	2.5	3,2	4	5	6.3	8
Electrical Parameters							
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation							
Air flow (A/M/B)	m³/h	750/640/550	750/640/550	750/640/550	900/820/750	900/820/750	900/820/750
Sound pressure level (A/M/B)	dB(A)	38/35/33	38/35/33	40/37/35	40/37/35	42/39/36	42/39/36
Sound power level (A/M/B)	dB(A)	51/48/46	51/48/46	53/50/48	53/50/48	55/52/49	55/52/49
Installation – Dimensions							
Unit Dimensions WxDxH	mm	1270×260×710	1270×260×710	1270×260×710	1270x260x710	1270×260×710	1270×260×710
Packaged unit dimensions WxDxH	mm	1330×270×750	1330x270x750	1330x270x750	1330x270x750	1330x270x750	1330x270x750
Net weight / Gross weight	Kg	32/40	32/40	32/40	34/42	34/42	34/42
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	9.52
Ø Gas side refrigerant pipe	mm	9.52	9.52	12.7	12.7	12.7	15.88
Static pressure (Standard / Max)	Pa	0/30	0/30	0/30	0/30	0/30	0/30

AF052MBERA AF072MBERA AF092MBERA AF122MBERA AF162MBERA AF182MBERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controller YR-E17

Optional remote control YR-HD01

Optional controller YR-E16B

- Double air delivery, upper and lower.
 - In heating mode: both outputs are enabled, to spread hot air at floor level preventing the "cold feet" effect typical of only higher deliveries. By acting on the on-board selector it is possible to inhibit the lower output in heating mode.
- In cooling mode: The unit works only with the top delivery, the lower output automatically closes.
- Compact and elegant design
- Silent operation
- DC inverter fan motor
- 5 speeds only selectable with wired controller YR-E16B and YR-E17. With all other controllers, there are only 3 speeds available.

Model		AF052MBERA	AF072MBERA	AF092MBERA	AF122MBERA	AF162MBERA	AF182MBERA
Commercial code		25014201J	25014203J	25014213J	25014223J	25014243J	25014253J
Capacity							
Cooling	kW	1.5	2.2	2.8	3.6	4.5	5.0
Heating	kW	1.7	2.6	3,2	4	5	5.5
Electrical Parameters							
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation							
Air flow (High)	m³/h	460/380/300	460/380/300	460/380/300	510/450/350	640/470/390	640/470/390
Sound pressure level (A/M/B)	dB(A)	42/36/31	42/36/31	43/39/35	43/39/35	48/44/38	48/44/38
Sound power level (A/M/B)	dB(A)	53/47/42	53/47/42	54/50/46	54/50/46	59/55/49	59/55/49
Installation – Dimensions							
Unit Dimensions WxDxH	mm	700x210x600	700x210x600	700x210x600	700×210×600	700×210×600	700x210x600
Packaged unit dimensions WxDxH	mm	783x303x695	783x303x695	783x303x695	783x303x695	783x303x695	783x303x695
Net weight / Gross weight	Kg	17/19	17/19	17/19	17/19	17/19	17/19
Ø Liquid side refrigerant pipe	mm	6.35	6.35	6.35	6.35	6.35	6.35
Ø Gas side refrigerant pipe	mm	12.7	12.7	12.7	12.7	12.7	12.7

MRV

Indoor units

for air treatment

Ducted High-Pressure at all outdoor air

Heat Recovery Unit

Thermodynamic Heat Recovery Unit - with on board compressor

Air Treatment Units

AD482MPERA

AD722MPERA AD962MPERA

Optional controller HW-BA116ABK

Optional controller HW-BA101ABT

Optional controlle

optional remote control YR-HD01 (RE-02 remote control receiver)

Optional controller YR-E16B

- Static pressure varies from 100 to 200 Pa using included booster cable.
- Can be installed together with other indoor units on the same refrigerating circuit, to pre-treat the outdoor air before sending it to indoor units or in the environment.
- The nominal potential in heating is always lower than that of cooling. Be careful in the selection.
- Not equipped with condensate drain pump.

NOTE:

The AD482MPERA unit cannot be used in 1:1 combination to create a mono system.

The use of air-to-air units outside the interior of a mixed MRV system must be evaluated and approved by a Haier technician.

Model		AD482MPERA	AD722MPERA	AD962MPERA
Commercial code		25011992J	25011995J	25011997J
Capacity				
Cooling	kW	14	22.6	28
Heating	kW	8.9	15.2	17.8
Electrical Parameters				
Power supply	Ph-V/Hz	1/220-230/50/60	1/220-230/50/60	1/220-230/50/60
Ventilation				
Air flow (High)	m³/h	1600	2400	2800
Sound pressure level (A/B)	dB(A)	48	55	55
Sound power level (A/B)	dB(A)	61	68	68
Installation – Dimensions				
Unit Dimensions WxDxH	mm	1355x876x360	1725x876x360	1725x876x360
Packaged unit dimensions WxDxH	mm	1386x966x418	1830x990x530	1830x990x530
Net weight / Gross weight	Kg	62/77	92/100	92/100
Ø Liquid side refrigerant pipe	mm	9.52	9.52	9.52
Ø Gas side refrigerant pipe	mm	15.88	25.4	25.4
Static pressure (Standard / Max)	Pa	100/185	100/200	100/200

Not compatible with with MRV-S and MRV-5RC

TECHNICAL SPECIFICATIONS

- Static enthalpic cross-flow heat recovery unit with thermal efficiency up to 76%. Paper exchanger.
- Self-supporting galvanised steel metal structure insulated internally and externally; accessibility through side door.
- Air filtration in efficiency class F9 (with pre-filter G3) on the fresh air, filter G3 on the intake flow
- Integrated dirty filters signalling pressure switch
- Motorised by-pass system of the heat recovery unit automatically implemented by the electronic control to guarantee free cooling with the outside air when convenient
- Electric fans with low consumption, high performance and low noise DC motor; possibility of managing 10 speed levels.
- Connections to the ducts with plastic fittings
- Built-in electrical panel with electronic board for controlling the

ventilation and free-cooling functions

- Direct management from the controller of the SBE electrical resistor kit for pre or post-heating.
- · Electronic board with standard MOD-BUS output
- Inputs for CO_2 and humidity ambient probes

standard controller PTS TOUCH

HACI-RP model		25	35	50	65	80	100	130
Rated air flow	m³/h	250	350	500	650	800	1000	1300
Nominal useful static pressure	Pa	90	140	110	100	140	140	140
Power supply	V/ph/Hz				230/1/50			
Total maximum absorbed current	А	0.5	0.6	0.6	1.2	1.4	2.1	2.7
FANS		25	35	50	65	80	100	130
Motor type		EC	EC	EC	EC	EC	EC	EC
No. of speeds (WIDE FLOW RANGE)		10	10	10	10	10	10	10
Ventilation control (1)		Man	Man	Man	Man	Man	Man	Man
Internal specific ventilation power - SFP (5)	W/(m³/s)	812	670	547	846	865	881	873
Total nominal absorbed power	kW	0.08	0.13	0.15	0.23	0.32	0.39	0.50
Sound pressure level (2)	db (A)	34	37	39	40	42	43	44
HEAT RECOVERY UNIT		25	35	50	65	80	100	130
Winter thermal efficiency (3)	%	73.0	74.0	76.0	74.0	76.0	76.0	74.2
Winter enthalpic efficiency (3)	%	65.0	65.0	67.0	65.0	65.0	62.0	59.0
Summer thermal efficiency (4)	%	73.0	74.0	76.0	74.0	76.0	76.0	74.0
Summer enthalpic efficiency (4)	%	62.0	62.0	63.0	60.0	63.0	60.0	58.0
Dry enthalpic efficiency (5)	%	73.0	74.0	76.0	74.0	76.0	76.0	74.0

- 1) Man = Manual from selector or keyboard;
- Sound pressure level rated at 1m by: ducted delivery-discharge / ducted external air intake / inspection side at nominal conditions
- (3) Outdoor air -5°C 80% UR; ambient air 20°C 50% UR

- (4) Outdoor air 32°C 50% UR; ambient air 26°C 50% UR
- (5) According to EU Regulation 1253/2014: at nominal pressure; temperature and humidity conditions for EN 308

DIMENSIONS

Model		Dime	nsions		Weight
HACI-RP	A [mm]	B [mm]	C [mm]	D [mm]	[kg]
25	814	100	650	270	30
35	814	100	855	270	37
50	894	107	955	270	43
65	1186	85	945	388	65
80	1186	85	1200	388	71
100	1199	85	1290	388	83
130	1199	85	1290	388	83

Σ

MRV

MRV INDOOR UNITS Cross-Flow Heat Recovery Unit **HACI-RPDX** with direct expansion coil

HACI-RPDX TECHNICAL SPECIFICATIONS

- Enthalpic heat recovery unit with integrated direct expansion coil.
- Self-supporting galvanised sheet metal structure insulated internally and externally; accessibility through side door.
- Air filtration in ISO 16890 ePM2.5 95% efficiency class (with COARSE pre-filter 50%) on the fresh air, COARSE filter 50% on the intake flow.
- Integrated dirty filter notification through pressure switch.
- Motorised by-pass system of the heat recovery unit automatically implemented by the electronic control to guarantee free cooling with the outside air when convenient.
- Electric fans with low consumption, high performance and low noise DC motor; possibility of managing 3 speed levels.
- · Connections to the ducts with plastic fittings.
- Built-in electrical panel with electronic board for controlling the ventilation and free-cooling functions.
- Input module to be connected to VRF system with direct expansion coil
 with copper pipes and aluminium fins (R410A) equipped with expansion
 valve, filter, regulation probes on the refrigeration line and temperature
 probes upstream and downstream of the air flow.
- Electronic board for managing thermo-ventilation functions (optional remote-control panel), interfaced flexibly with the UTA kit.
- Remote control YR-E16B(E) is standard.

of the system must not work beyond 130%

units on the same circuit.

· You cannot install it in 1:1 configuration without other MRV indoor

· When you insert this product into an MRV system, the outdoor unit

standard controller YR-E16B(E)

NOTES

 This recovery unit is similar to an MRV indoor unit, which can be inserted into a system along with other indoor units.

MRV INDOOR UNITS Cross-Flow Heat Recovery Unit **HACI-RPDX** with direct expansion coil

Model HACI-RPDX		50	65	80	100	130
Air flow (min/nominal/max)	m³/h	300/500/560	380/650/770	540/800/1050	675/1000/1220	840/1300/1450
Nominal useful static pressure	Pa	90	75	120	115	105
Power supply	V/ph/Hz			230/1/50		
Total maximum absorbed current	А	0.6	1.2	1.4	2.1	2,7
FANS		50	65	80	100	130
Motor type		EC	EC	EC	EC	EC
Speed No.		3	3	3	3	3
Ventilation control (1)		Man	Man	Man	Man	Man
Specific indoor ventilation power - SFP indoor (5)	W/(m ³ /s)	547	846	865	881	873
Total nominal absorbed power	kW	0.15	0.23	0.32	0.39	0.49
Sound pressure level (2)	db (A)	39	40	42	43	44
HEAT RECOVERY UNIT		50	65	80	100	130
Winter thermal efficiency (3)	%	76.0	74.0	76.0	76.0	74.2
Winter enthalpic efficiency (3)	%	67.0	65.0	65.0	62.0	59.0
Summer thermal efficiency (4)	%	76.0	74.0	76.0	76.0	74.0
Summer enthalpic efficiency (4)	%	63.0	60.0	63.0	60.0	58.0
Dry enthalpic efficiency (5)	%	76.0	74.0	76.0	76.0	74.0
DIRECT EXPANSION COIL		50	65	80	100	130
Thermal power (6)	kW	2.5 (2.7)	3.0 (3.3)	4.4 (4.8)	5.2 (6.7)	6.2 (6.7)
Total cooling power (7)	kW	3.0	3.5	5.1	5.8	7.0

- (1) Man = Manual from selector or keyboard;
- (2) Sound pressure level rated at 1m by: ducted delivery-discharge / ducted external air intake / inspection side at nominal conditions
- (3) Outdoor air -5°C 80% UR; ambient air 20°C 50% UR
- (4) Outdoor air 32°C 50% UR; ambient air 26°C 50% UR
- (5) According to EU Regulation 1253/2014: at nominal pressure; temperature and humidity conditions for EN 308
- (6) Coil input air: 13°C BS, 40% RH (11°C BS, 45% RH); condensation 40°C
- (7) Coil input air: 28,5°C BS, 50% UR; evaporation 7°C

MRV INDOOR UNITS Cross-Flow Heat Recovery Unit

INTRODUCTION

The HACI-RP series air renewal units are characterised by the adoption of an enthalpic special cross-flow paper exchanger. This avoids, or at least greatly reduces, the use of post-treatment systems for replacement air, with what follows at the energy and plant level.

The units in the HACI-RP series for ceiling or similar applications allow for large plant configurations.

They have as standard compact filters with F7 efficiency on the renewal flow and M5 on the discharge flow.

These units integrate optimally with traditional heating/environmental conditioning systems, either in series or in parallel.

TECHNICAL SPECIFICATIONS

- Sandwich type panel structure sp. 23 mm, sheet metal pre-varnished externally with thermo-acoustic insulation polyurethane injected with a density of 45 kg/m³.
- Enthalpic heat recovery unit from static-type paper in countercurrent flows with close pitch. Exchanger removable from below for maintenance on all models.
- Centrifugal double-intake electric fans with forward blades with directly coupled electric motor, continuously adjustable.
- Filtering sections consisting of compact cell filters with medium density propylene for low pressure drop; can be removed sideways; in F7 efficiency class in the renewal flow, and M5 in the discharge flow.
- · Controller included.
- Free-cooling system, with by-pass section integrated in the manual controller, (Automated Controller OPTIONAL).

HACI-RP model		150	200	320
Rated air flow	m³/h	1500	2300	3100
Nominal useful static pressure	Pa	190	240	190
Power supply	V/ph/Hz		230/1/50	
Total maximum absorbed current	А	6.0	14.0	14.0
FANS		150	200	300
Motor type		AC	AC	AC
Speed No.		3	3	3
Ventilation control (1)		Man	Man	Man
Specific indoor ventilation power - SFP indoor (5)	W/(m³/s)	1031	1008	966
Total nominal absorbed power	kW	0.96	1.55	1.67
Sound pressure level (2)	db (A)	62	62	68
HEAT RECOVERY UNIT		150	200	300
Winter thermal efficiency (3)	%	73.0	73.2	71.4
Winter enthalpic efficiency (3)	%	62.5	62.7	55.5
Summer thermal efficiency (4)	%	60.1	60.2	57.4
Summer enthalpic efficiency (4)	%	58.3	58.5	52.5
Dry enthalpic efficiency (5)	%	73.1	73.2	73.0

⁽¹⁾ Man = Manual from selector or keyboard;

⁽²⁾ Sound pressure level rated at 1m by: ducted delivery-discharge / ducted external air intake / inspection side at nominal conditions

⁽³⁾ Outdoor air -5°C 80% UR; ambient air 20°C 50% UR

⁽⁴⁾ Outdoor air 32°C 50% UR; ambient air 26°C 50% UR

⁽⁵⁾ According to EU Regulation 1253/2014: at nominal pressure; temperature and humidity conditions for EN 308

	Dimensions								Weight		
B [mm]	C [mm]	D [mm]	D1 [mm]	E [mm]	F [mm]	F1 [mm]	G [mm]	G1 (¹) Ø [inch]	Y [mm]	K [mm]	[kg]
680	1290	400	130	410	300	170	260	3/4"	220	600	190
680	1290	400	50	410	330	170	290	3/4"	155	620	200
680	1290	500	50	510	330	195	290	3/4"	155	700	220
	[mm] 680 680	[mm] [mm] 680 1290 680 1290	[mm] [mm] [mm] 680 1290 400 680 1290 400	[mm] [mm] [mm] [mm] 680 1290 400 130 680 1290 400 50	[mm] [mm] [mm] [mm] 680 1290 400 130 410 680 1290 400 50 410	[mm] [mm] [mm] [mm] [mm] 680 1290 400 130 410 300 680 1290 400 50 410 330	[mm] [mm] <th< td=""><td>[mm] [mm] <th< td=""><td>[mm] [mm] Ø [inch] 680 1290 400 130 410 300 170 260 3/4" 680 1290 400 50 410 330 170 290 3/4"</td><td>[mm] [mm] <th< td=""><td>[mm] [mm] <th< td=""></th<></td></th<></td></th<></td></th<>	[mm] [mm] <th< td=""><td>[mm] [mm] Ø [inch] 680 1290 400 130 410 300 170 260 3/4" 680 1290 400 50 410 330 170 290 3/4"</td><td>[mm] [mm] <th< td=""><td>[mm] [mm] <th< td=""></th<></td></th<></td></th<>	[mm] Ø [inch] 680 1290 400 130 410 300 170 260 3/4" 680 1290 400 50 410 330 170 290 3/4"	[mm] [mm] <th< td=""><td>[mm] [mm] <th< td=""></th<></td></th<>	[mm] [mm] <th< td=""></th<>

The orientations depicted are related to the machine seen from above

HACI-RO 15 HACI-RO 28

TECHNICAL SPECIFICATIONS

Range consisting of two models for horizontal ceiling installation or vertical wall installation, comprising of:

- Expanded polypropylene case and cover equipped with external reinforcing sheets for locking seals and for ceiling/wall fastening; internal aerodynamic shaping of the air circuits to minimise pressure drops and hiss
- G4 efficiency class synthetic panel filters (optional and in addition, F7 compact filters in polypropylene for low pressure drop)
- High-efficiency static air-air counter-current recovery unit in polystyrene complete with motorized by-pass system
- Free impeller fans in polyamide and fiberglass reinforced directly coupled to DC electric motor
- Circular aeraulic connections in plastic material equipped with additional sealing gasket
- Recovery unit complete with motorized partial by-pass system
- Electronic control complete with NTC probes and user interface
- Remote user interface with built-in room probe on PRE
- User interface and wireless remote sensors on PRH
- Wireless wi-fi remote control Coil life of 6 years
 - 3 speeds + timed ambient washing program
 - 4-key user interface

Model HACI-RO			15	28
Maximum air flow (at 1	00 Pa)	m³/h	170	260
Rated air flow		m³/h	155	200
Nominal static pressur	e	Pa	150	170
LpA sound pressure lev	/el (1)	db (A)	39	43
SEC Class (1)			А	А
Operating limits		°C	-15	÷ 45
FANS			15	28
Power supply		V/ph/Hz	230/	1/50
Maximum absorbed cu	rrent (2)	А	1.20	1.50
Maximum absorbed po	wer (2)	W	130	170
Speed No.			Adjusta	able >3
HEAT RECOVERY UNI	г		15	28
Winter venime (3)	Efficiency	%	90.2	90.0
Winter regime (3)	Air entered	°C / %	17.2 / 17.5	17.4 / 17
Summor ragima (4)	Efficiency	%	84.2	83.9
Summer regime (4)	Air entered	°C/%	26.9	27.0 / 67

- (1) At the reference flow rate equal to 70% of the maximum value, LpA 1.5 m of distance in open field
- (2) Maximum total value of the two fans
- (3) Outdoor air: -5 °C, RH 80%, ambient air: 20 °C, RH 50%
- (4) Outdoor air: 32 °C, RH 50 %, ambient air: 26 °C, RH 50 %

Heat recovery efficiency up to 90%

Bypass device Integrated thermal

Not compatible with with MRV-S and MRV-SRC

HACI-RV 150 HACI-RV 250 HACI-RV 350 HACI-RV 500 HACI-RV 600

TECHNICAL SPECIFICATIONS

- Stale air extraction and fresh air entry with very high efficiency heat recovery for residential and commercial applications with moderate air replacement requirements.
- Possible integration with existing heating and air conditioning systems.
- Suitable solution for installation in environments such as laundries, cellars, technical rooms in general, with vertical connections to ducts.

Range for vertical floor or wall unit installation, consisting of:

- Casing and cover in high density expanded polypropylene; internal aerodynamic shaping of the air circuits to minimise charge losses and hiss.
- Filters in efficiency class ISO 16890 and PM1 70% in polypropylene with low pressure drop.

- High-efficiency static air-air counter-current recovery unit in polystyrene, complete with motorised by-pass system (total of 350, 500 and 600).
- Free impeller fans in polyamide and fiberglass reinforced and directly coupled to DC electric motor.
- Reversible upper aeraulic connections between ambient and external side.
- Comprehensive electronic control with temperature probes and user interface; integrated thermal by-pass.
- · Wireless remote controllable user interface and sensors.
- · Standard Wi-Fi controller.

Model HACI-RV		150	250	350	500	600	
Maximum nominal air flow (at 100 Pa)	m³/h	152	250	352	500	600	
Maximum useful static pressure at nominal flow	Pa	300	100	280	100	100	
Power supply	V/ph/Hz			230/1/50			
Maximum absorbed electrical power	W	136	136	196	196	340	
Total maximum absorbed current	А	1.3	1.3	1.7	1.7	3.4	
OPERATING LIMITS		150	250	350	500	600	
Temperature conditions - external limit humidity	°C/%	-5 +45 °C / 5 95%					
Temperature conditions - external limit humidity with BE1 /BW1 accessory	°C/%	-15 +45 °C / 5 95%					
Temperature conditions - internal limit humidity	°C/%	+10 +35 °C / 10 90%					
HEAT RECOVERY UNIT		150	250	350	500	600	
Winter thermal efficiency (1)	%	87.2	87.0	85.7	88.2	84.8	
Temperature of delivered air (1)	°C	17.0	22.0	16.4	17.0	16.2	
Summer thermal efficiency (2)	%	82.4	79.9	80.4	81.0	79.2	
Temperature of delivered air (2)	°C	27.1	27.2	27.2	27.1	27.2	
SPECIFIC ECODESIGN DATA (5)		150	250	350	500	600	
SEC moderate climate controlled with timer		Α	Α	Α	Α	Α	
SEC-class moderate climate controlled centrally		А	А	А	А	А	
SEC-class moderate climate controlled locally		А	А	A+	A+	А	
Sound pressure level radiated from LpA casing (4)	db (A)	38	40	42	43	44	

- (1) Outdoor air -5°C 80% UR; ambient air 20°C 50% UR
- (2) Outdoor air 32°C 50% UR; ambient air 26°C 50% UR
- (3) According to EU regulation 1253/2014: at the reference flow rate of 70% of the maximum, at 50 Pa useful
- (4) LpA $1.5\,\mathrm{m}$ away in open field

Not compatible with with MRV-S and MRV-5RC

HACI-RA 40 HACI-RA 75 HACI-RA 100 HACI-RA 200 HACI-RA 320 HACI-RA 400 HACI-RA 500

INTRODUCTION

The HACI-RA series air renewal units are characterised by the adoption of a special aluminium air-to-air exchanger with counter-current flows. This avoids, or at least greatly reduces, the use of post-treatment systems for replacement air, with what follows at the energy and plant level.

The units in the HACI-RA series for ceiling or similar applications allow for large plant configurations.

They have as standard compact filters with F7 efficiency on the renewal flow and M5 on the discharge flow (F7 in optional discharge).

These units integrate optimally with traditional heating/environmental conditioning systems, either in series or in parallel.

TECHNICAL SPECIFICATIONS

- Air-air heat recovery unit in static type aluminium with counter-current flows with close pitch.
 - Lateral extraction of the exchanger for maintenance (except for size 40 with extraction from below).
- Sandwich type panel structure sp. 23 mm, sheet metal pre-varnished with thermo-acoustic insulation polyurethane injected with a density of 45 kg/m³
- Centrifugal double-intake electric fans with forward blades, directly coupled electric motor, continuously adjustable; high-efficiency electric motors with DC technology (DC standard on size 400-500).
- Filtering sections consisting of compact cell filters with medium density in low load loss polypropylene, which can be removed sideways, in the F7 efficiency class in the renewal flow, and M5 in the discharge flow.
- Galvanised sheet metal condensate collection tank with lower drain connection.
- · Standard controller.
- Manual integrated free-cooling system, (Optional automated).

Model HACI-RA		40	75	100	150	200	320	400	500		
Rated air flow	m³/h	400	750	1000	1500	2050	3200	3800	4700		
Nominal useful static pressure	Pa	160	120	130	160	120	180	200	200		
Maximum useful static pressure	Pa	160	120	130	160	120	180	330	200		
Power supply	V/ph/Hz	230/1/50									
Total maximum absorbed current	А	1.5	2.9	6.0	6.0	6.0	14.0	8.8	8.8		
FANS		40	75	100	150	200	320	400	500		
Motor type		AC	AC	AC	AC	AC	AC	EC	EC		
Speed No.		4	3	3	3	3	3	Multiple	Multiple		
Ventilation control (1)		Man	Man	Man	Man	Man	Man	0-10V VSD	0-10V VSD		
Specific indoor ventilation power - SFP indoor (5)	W/(m³/s)	740	934	1105	1102	1078	1054	949	935		
Total nominal absorbed power	kW	0.17	0.38	0.52	0.80	1.00	1.79	1.78	2.19		
Sound pressure level (2)	db (A)	59	60	63	63	63	69	70	73		
HEAT RECOVERY UNIT		40	75	100	150	200	320	400	500		
Winter thermal efficiency (3)	%	83.6	82.9	81.6	83.3	83.7	86.8	84.1	84.2		
Summer thermal efficiency (4)	%	75.5	75.9	74.5	75.1	75.6	78.0	75.0	75.1		
Dry enthalpic efficiency (5)	%	75.9	76.4	75.0	75.6	76.0	76.3	75.5	75.6		

⁽¹⁾ Multiple = Multispeed > 3; Man = Manual from selector or keyboard; 0-10V = From potentiometer or keyboard; VSD = Constant flow or modulation by air quality / humidity sensor

 $^{(2) \}quad \text{Sound pressure level rated at 1m by: ducted delivery-discharge / ducted external air intake / inspection side at nominal conditions}$

⁽³⁾ Outdoor air -5°C 80% UR; ambient air 20°C 50% UR

⁽⁴⁾ Outdoor air 32°C 50% UR; ambient air 26°C 50% UR

⁽⁵⁾ According to EU Regulation 1253/2014: at nominal pressure; temperature and humidity conditions for EN 308

Model	Dimensions										Weight			
HACI-RP	A [mm]	B [mm]	C [mm]	D [mm]	D1 [mm]	E [mm]	F [mm]	F1 [mm]	G [mm]	G1 (¹) Ø [inch]	S Ø[inch]	Y [mm]	K [mm]	[kg]
150	2200	550	1400	300	100	410	230	145	260	3/4"	1/2"	90	600	170
200	2200	550	1400	500	100	410	300	215	260	3/4"	1/2"	90	620	200
320	2500	680	1400	500	150	510	330	195	290	3/4"	1/2"	115	700	230
400	2500	680	1400	500	100	510	405	157.5	405	1"	1/2"	/	700	260
500	2500	680	1700	500	185	510	405	232.5	405	1"	1/2"	/	800	300

INTRODUCTION

The HACI-RAV series air renewal units are characterised by the adoption of a special aluminium air-to-air exchanger with counter-current flows. This avoids, or at least greatly reduces, the use of post-treatment systems for replacement air, with what follows at the energy and plant level.

The units of the HACI-RAV series in horizontal or vertical version allow for large plant configurations and have standard fans that can be replaced, alternatively, by the corresponding DC technology (optional). They have compact filters as standard with efficiency ISO 16890 ePM1 55% (F7 EN 779) on the renewal flow and ePM10 55% (M5 EN 779) on the discharge flow ePM1 55% (F7 EN 779) in optional discharge.

These units integrate optimally with traditional heating/environmental conditioning systems, whether they are placed in series or in parallel. The HACI-RAV series consists of eight models, exclusively in the vertical version, to cover a ventilation requirement from 400 to 5000 m³/h. Each model is available in two configurations.

PCUE CONTROL PANEL AS STANDARD

- With this panel it is possible to manage the operating point of the DC fans, attributing to the 3 speeds, customized flow values by acting on the 0-10 V signal.
- · Manages the activation of a water coil or electrical resistance by ON/ OFF signal.
- · Check the free-cooling function by reading the temperature probes installed in the machine.
- Manages the coil antifreeze and defrosting function of the recovery unit.
- · Alternative command on PCUEM demand, same characteristics as the PCUE but with MODBUS RTU output as standard for third-party control.

TECHNICAL SPECIFICATIONS

- · High efficiency static heat recovery unit with removable aluminium counter-current plates for any extraordinary cleaning.
- · Acoustic and thermal insulation of the panels by means of polyurethane with an average thickness of 23 mm.
- · Renewal air and discharge air fans of double intake centrifugal type.
- · Directly coupled electric motor, type DC in HACI-RAEV.
- Standard air filters with ISO 16890 ePM1 55% efficiency (F7 EN 779) in delivery and ePM10 55% (M5 EN 779) in intake, easily removable sideways for the purpose of allowing their periodic cleaning.

- Fresh air filter pressure switch with visual warning of dirty filter alarm.
- The supporting structure and the side panels (sandwich type, removable) are made of pre-varnished sheet metal.
- By pass for defrosting or free cooling.

Model HACI-RAV		40	75	100	150	200	320	400	500	
Rated air flow	m³/h	400	750	1000	1500	2050	3200	3800	4700	
Nominal useful static pressure	Pa	160	120	180	160	120	180	200	200	
Maximum useful static pressure	Pa	340	160	520	500	540	375	330	200	
Power supply	V/ph/Hz	230/	1/50			230/1	/50-60			
Total maximum absorbed power	kW	0.56	0.56	2.12	2.12	2.12	2.35	2.11	2.11	
Total maximum absorbed current	Α	2.4	2.4	9.0	9.0	9.0	10.0	8.8	8.8	
FUNCTIONAL LIMITATIONS		40	75	100	150	200	320	400	500	
Temperature conditions - external limit humidity	°C / %				-5 +45 °C	C / 5 95%				
$\label{temperature} Temperature conditions - external limit humidity with RMS and/or BER-PRR accessory$	°C/%	-15 +45 °C / 5 95%								
Temperature conditions - internal limit humidity	°C / %	-15 +45 °C / 5 95%								
FANS		40	75	100	150	200	320	400	500	
Motor type					Е	С				
Speed No. (1)	No.	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple	
Ventilation control (1)		0-10V	0-10V	0-10V VSD	0-10V VS[
Total nominal absorbed power	kW	0.16	0.30	0.57	0.76	0.84	1.77	1.78	2.11	
Total nominal absorbed current	А	0.7	1.3	2.4	3,2	3.6	7.5	7.6	9.0	
HEAT RECOVERY UNIT		40	75	100	150	200	320	400	500	
Winter thermal efficiency (2)	%	83.6%	82.9%	81.6%	83.3%	83.7%	86.8%	84.1%	84.2%	
Thermal power recovered (2)	kW	2.76	5.13	6.73	10.30	14.14	22.90	26.34	32.62	
Temperature of delivered air (2)	°C	15.9	15.7	15.4	15.8	15.9	16.7	16.0	16.1	
Summer thermal efficiency (3)	%	75.5%	75.9%	74.5%	75.1%	75.6%	78.0%	75.0%	75.1%	
Refrigerated power recovered (3)	kW	0.61	1.15	1.50	2.27	3.12	5.02	5.73	7.10	
Temperature of delivered air (3)	°C	27.5	27.4	27.5	27.5	27.5	27.3	27.5	27.5	
Dry thermal efficiency (4)	%	75.9%	76.4%	75.0%	75.6%	76.0%	76.3%	75.5%	75.6%	
Sound power level radiated by casing (5)	dB(A)	57	60	59	61	59	64	66	68	

(1) Multiple = Multispeed > 3 0-10V = From potentiometer or keyboard $\label{eq:VSD} VSD = constant \ flow\ or\ modulation\ by\ air\ quality\ /\ humidity\ sensor$

humidity conditions referring to EN 308 (5) Sound power level at nominal operating conditions

- (2) outdoor air -5°C 80% RH; ambient air 20°C 50% RH
- (3) outdoor air 32°C 50% RH; ambient air 26°C 50% RH
- (4) According to EU regulation 1253/2014: at nominal pressure; temperature and

DIMENSIONS Electrical panel 0 √G1 øs Dimensional drawing referred to orientation 2: the dimensions do not change with the orientation. BCR/BER (accessories)/

Model								Dimensions								Weight
HACI-RAV	Α,	В.	. с	, D	D1	Ε.	. F	F1	. G	G1 (1)	S (3)	, T ,	K (2)	J (¹)	W (1)	[kg]
	[mm]	[mm]	Ø inç	Ø inç	[mm]	[mm]	[mm]	[mm]	- 5-							
40	1480	420	830	200	80	210	230	190/240	70	3/4"	1/2"	360	500	412	177	90
75	1940	520	1070	300	80	310	230	135	210	3/4"	1/2"	710	500	550	190	150
100	1940	520	1070	300	80	310	230	135 / 235	260	3/4"	1/2"	710	500	550	190	160
150	2200	520	1080	300	70	410	230	165/270	260	3/4"	1/2"	800	600	550	265	180
200	2200	720	1480	500	70	410	300	165/270	260	3/4"	1/2"	800	620	550	350	220
320	2500	720	1480	400	80	510	330	195/350	290	3/4"	1/2"	875	700	620	375	250
400	2500	720	1480	500	80	510	405	150/280	405	1"	1/2"	875	700	620	375	280
500	2500	720	1780	500	80	510	405	150/280	405	1"	1/2"	875	800	620	375	330

- (1) Optional BCR post-heating water coil connections
- (2) Note referring to the RMS accessory (see figure on the previous page)
- (3) Condensate drain

MRV INDOOR UNITS Thermodynamic Heat Recovery Unit HACI-HP

HACI-HP/E/EI 35 HACI-HP/E/EI 60 HACI-HP/F/FI 100 HACI-HP/E/EI 150 HACI-HP/E/EI 230 HACI-HP/F/FI 320 HACI-HP/E/EI 450

Standard controller installed on the

Possibility of remote control via optional wired keyboard.

INTRODUCTION

The HACI-HP air renewal units are characterised by the adoption of a double energy recovery system, otherwise lost during the discharge of the stale air: the first, static type, by means of a cross-flow recovery unit with aluminium plates, the second (in cascade to the previous one), of the active type, created by means of a reversible cooling circuit.

This allows, with a single independent device, to satisfy at the same time the renewal of the air in respect of comfort, the reduction of the thermal loads associated with it and energy savings, thanks to the very high overall efficiency, both in winter and summer.

Together with their compact dimensions, the peculiar characteristics of these units facilitate installations unthinkable with traditional systems, requiring greater complications and plant costs.

In its new guise, HACI-HP allows even greater accessibility to the electrical panel for easier maintenance.

These units integrate optimally with traditional heating/environmental conditioning systems, whether they are placed in series or in parallel.

ATTENTION: the HACI-HP thermodynamic recovery units have been designed to extract and renew the air in the environments where they are installed. The refrigerant circuit on board is sized to neutralise the air entering the environment as much as possible so as not to alter the climatic conditions of the environment. These units are NOT to be considered air conditioners, the thermal loads of the rooms must be managed by other properly sized thermal or refrigeration sources

TECHNICAL SPECIFICATIONS

- Frame in extruded aluminium profile, Anticorodal 63 alloy, with knot joints in preloaded nylon
- Sandwich type buffer panels sp. 23 mm, sheet metal galvanized internally and pre-varnished externally with thermo-acoustic insulation polyurethane injected with a density of 45 kg/m³
- Filtration sections at the intake, consisting of filters with synthetic cells in efficiency class G4, removable both from below and laterally
- Centrifugal double-intake electric fans with forward blades with directly coupled electric motor.
- · First stage of thermal transfer (static) by means of an air-air exchanger with crossed flows with aluminium exchange plates; lower condensate collection tank, extended to the whole area dedicated to heat treatment
- Second stage of thermal transfer (active) by means of a heat pump cooling circuit (with R410A gas) consisting of a hermetic compressor (rotary or scroll depending on the size of the machine), evaporating and condensing coils with copper pipes and continuous aluminium fins, electronic expansion valve, liquid separator and receiver, 4-way valve for cycle inversion, high and low pressure switches, freon filter, liquid sight
- Internal electrical panel for load management; NTC type temperature probes on both air circuits; electronic microprocessor control for automatic management of room temperature, hot / cold switching and defrosting cycles; remote control panel up to 20 m from the unit

CONSTRUCTION AND FUNCTIONAL FEATURES SPECIFIC TO HACI-HP / HPE / HPEI

- The HP series uses AC type fans and fixed power compressors. For the unit to function properly, the load losses introduced as a result of the installation of ducts and diffusers will need to ensure a final air flow of between +/- 10% of the nominal flow rate indicated in the table. The operation of the unit with airflow beyond the indicated limit (+/-10%), does not guarantee the perfect operation of the refrigeration circuit in terms of yield, efficiency
- The HPE series, unlike the HP, uses DC motor fans and fixed power compressors. With DC motor fans it is possible to obtain higher static PA pressures than conventional AC motors. Sizes ranging from 100 to 450, thanks to DC technology, can work at a constant flow rate. The flow can also be electronically varied by +/-10% compared to the nominal flow.
 - Operating the unit with airflow beyond the indicated limit (/-10%, due to installation factors, ducts and diffusers) does not guarantee the perfect operation of the refrigeration circuit in terms of yield, efficiency and reliability.
- The HPI series is equipped with a sophisticated inverter control that acts on the DC fans, compressor speed and expansion valve opening. In doing so, we have the possibility of varying the nominal air flow from -35% to +20% (for size 35 from -15 to +20%) of the latter. Automatically the compressor and the expansion valve will adapt to the flow and temperature values obtained, in order to quarantee the correct supply of power to the exchangers. This function is very useful for adapting the performance of the installed recovery unit to the actual crowding of the room where we intend to renew the air. (Example, if the room has a capacity of 100 and the recovery unit has been sized for 100, and if the room is crowded only at 80% or 70% or 110%, with the HPI series we have the possibility of reducing or increasing performance in order to guarantee the correct energy consumption according to the real crowding. It is a constant of the real crowding of the real crowding or increasing performance in order to guarantee the correct energy consumption according to the real crowding. It is a constant of the real crowding of the repossible to automate this function by installing a CO2 probe in the environment that will communicate to the HPI recovery unit, the real% concentration of CO_2 present (regardless of the number of people) so that the inverter control intervenes on the various parameters / components of the recovery unit to adapt operation and return the CO2 value in the room to the defined / allow limits, for ideal comfort with the right energy consumption. Sizes from 100 to adapt operation and return the CO2 value in the room to the defined / allow limits, for ideal comfort with the right energy consumption. to 450 can also work with constant air flow to compensate for slight charge losses during the installation phase. Operating the unit with airflow beyond the indicated limit (-30 +/20%, due to installation factors, ducts and diffusers) does not guarantee the perfect operation of the refrigerated circuit in terms of yield, efficiency and reliability.

Model HACI-HP		35	E 35 El 35	60	E60 El60	100	E100 El100	150	E150 El150	230	E230 El230	320	E320 El320	450	E450 El450
Nominal air flow (1 speed)	m³/h	3:	50	60	00	10	000	15	500	23	500	32	00	45	500
Useful static pressure delivered	Pa	165	270	170	285	195	295	155	290	155	365	185	265	175	270
Useful static pressure intake	Pa	140	245	100	215	140	240	95	230	95	305	115	195	110	205
Sound pressure level (1)	db (A)	59 / 4	7/52	64/5	0/55	62/4	19 / 54	67/5	54/57	65/5	1/59	68/5	4/59	70/5	6 / 59
FUNCTIONAL LIMITATIONS		35	E 35 El 35	60	E60 E160	100	E100 El100	150	E150 El150	230	E230 El230	320	E320 El320	450	E450 E1450
Standard configuration winter limit conditions	°C/%	Min -10°C OUT & Min 19°C 50% IN													
Winter limit conditions with RMS accessory	°C/%					٨	1in -20°C	COUT 8	Min 19°	°C 50%	IN				
Summer limit conditions	°C / %					١	1ax 38°C	50% C	UT & Ma	ax 27°C	IN				
Flow variation field HP-HPE (suitable for proper operation)								±1	0%						
Flow variation field HPEI (suitable for proper operation)		-15%	. +20%	-35%.	. +20%	-35%	+20%	-35%	+20%	-30%	+20%	-35%.	. +20%	-35%.	+20%
ELECTRICAL DATA		35	E 35 El 35	60	E60 E160	100	E100 El100	150	E150 El150	230	E230 El230	320	E320 El320	450	E450 EI450
Power supply	V/ph/Hz				230/	1/50				400/3/50 (5 wires L1+L2+L3+N+T)					
Maximum absorbed current (2)	А	5.3	5.3	9.0	9.0	13.2	13.2	20.2	20.2	10.0	10.0	15.4	15.4	16.8	16.8
PERFORMANCE IN HEATING (3)		35	E 35 El 35	60	E60 E160	100	E100 El100	150	E150 El150	230	E230 El230	320	E320 El320	450	E450 El450
Static recovery efficiency	%	62	62	51	51	50	50	50	50	50	50	50	50	50	50
Total thermal power	W	3580	3580	5790	5790	9410	9410	14390	14390	21190	21190	30260	30260	36010	36010
Active thermal power recovery	W	1740	1740	2960	2960	5010	5010	7690	7690	11090	11090	16300	16300	17300	17300
Global COP (4)	W/W	10.9	10.9	9.6	9.6	9.2	9.2	8.6	8.6	8.9	8.9	9.9	9.9	12.6	12.6
PERFORMANCE IN COOLING (5)		35	E 35 El 35	60	E60 E160	100	E100 El100	150	E150 El150	230	E230 El230	320	E320 El320	450	E450 El450
Static recovery efficiency	%	56	56	50	50	50	50	50	50	50	50	50	50	49	49
Total cooling power	W	2210	2210	3450	3450	5840	5840	8720	8720	12830	12830	18390	18390	21440	21440
Refrigerating power active recovery	W	1810	1810	2860	2860	4890	4890	7270	7270	10580	10580	15310	15310	16990	16990
Global EER (4)	W/W	4.2	4.2	3.9	3.9	4.2	4.2	3.9	3.9	3.9	3.9	4.1	4.1	5.0	5.0
PERFORMANCE IN COOLING (5)		35	E 35 El 35	60	E60 E160	100	E100 El100	150	E150 El150	230	E230 El230	320	E320 El320	450	E450 El450
Refrigerant - GWP								R4	10A						
Number of circuits		1	1	1	1	1	1	1	1	1	1	1	1	1	1
Refrigerant charge	Kg	1.8	1.8	1.8	1.8	2.6	2.6	3.0	3.0	3,2	3,2	3.6	3.6	3.8	3.8
CO ₂ equivalent	Ton	3.7	3.7	3.7	3.7	5.4	5.4	6.2	6.2	6.6	6.6	7.5	7.5	7.9	7.9

- (1) Sound pressure level evaluated at 1m from: duct / intake / compressor compartment.
- (2) Referred to nominal flow

- (3) Outdoor air -5°C 80% UR; ambient air 20°C 50% UR
- (4) Excluding the power absorbed for ventilation
- (5) Outdoor air 32°C 50% UR; ambient air 26°C 50% UR

APPLICATIONS

Regulations require adequate air renewal in the premises according to the activity carried out inside the building. Thanks to the interface kit between high efficiency MRV units and direct expansion air treatment units, Haier is able to meet the needs for air renewal and treatment.

GENERIC CONNECTION SCHEME

CONNECTABLE OUTDOOR UNITS

CONTENTS OF THE UTA KIT

CONTROL AND MANAGEMENT SYSTEMS

A Haier MRV-UTA system is comparable to a classic VRF system, therefore it can be inserted in a group control context.

Example

SIMPLE INSTALLATION

Compared to a traditional water system, Haier UTA-MRV direct-expansion technology minimises plant components. No cooling towers, large water pipes or pumps are needed. In addition, the efficiency of MRV/VRF/VRV systems is notoriously higher than traditional air/water systems. Haier UTA-MRV systems can be independently or centrally controlled thanks to Haier's multiple solutions for product control and management. It is also possible to power MRV and UTA indoor units within the same plant.

CHARACTERISTICS AND FUNCTIONS

- Possibility to control third-party UTA
- Compatible with MRV 5-series outdoor units and S-series" (4-12 HP)
- A single box covers a power range of 3.5 to 73 KW. Possibility to connect up to 3 boxes in parallel for large powers.
- Expansion valve and paired electronic boards, with separation possibilities for greater flexibility during installation.
- Managing 0-10 V DDC inbound signal from third-party controller
- Temperature signal control provided by a DDC control or return from the Haier sensor
- Remote contact input to select Hot/Cold mode
- Clean contact input for managing 3 ventilation speeds
- Status signal output "Defrost / Defrost"

Technical specifications

AH1	-560B
A I I 1	770D

Model		AH1-070B	AH1-140B	AH1-280B	AH1-560B	AH1-730B
Commercial code		25030291J	25030292J	25030293J	25030294J	25030295J
Connectable capacity (kW UTA internal exchanger)	kW	3.5≤X≤7kW (1-3HP)	7≤X≤14kW (3-5HP)	14≤X≤28kW (5-10HP)	28≤X≤56kW (10-20HP)	56≤X≤73kW (20-26HP)
Power supply	V-Ph-Hz	220~230-1-50/60	220~230-1-50/60	220~230-1-50/60	220~230-1-50/60	220~230-1-50/60
Unit Dimensions WxDxH	mm	420x260x165	420×260×165	420×260×165	420x260x215	420x260x215
Packaged unit dimensions WxDxH	mm	520x340x225	520x340x225	520x340x225	520x340x275	520x340x275
Net weight / Gross weight	Kg	5.5 / 8.5	5.5 / 8.5	5.5 / 8.5	6.5 / 10	6.5 / 10
Material				Galvanised sheet		
Colour		Grey	Grey	Grey	Grey	Grey
iquid pipe diameter input/output to UTA)	mm	9.52 / 6.35	9.52 / 6.35	9.52 / 6.35	12.7/ 15.88	12.7/ 15.88
Connection method		Flare	Flare	Flare	Flare	Flare
Maximum distance between BOX and UTA	m	5	5	5	5	5
Maximum height difference between BOX and UTA	m	5	5	5	5	5

ADVANTAGES

AH1-070B AH1-140B AH1-280B

Valve capacity	Possibility to control UTA with power values from 3 to 73 kW with a single valve
High compatibility	The same electronic boards as the MRV indoor units for simple management and maintenance
Reliability	The expansion valve is produced by FUJIKOKI, the Japanese leader in this sector.

Control method "A"

The third-party control system generates a signal ranging from 0-10 V to represent the required power demand. Haier's UTA Kit uses this input signal to adjust the power delivered by the MRV unit to meet the real need for thermal air treatment.

Liquid/Gas refrigerant pipes, only the liquid pipe enters the valve box and then continues to the direct expansion coil. The Gas pipe goes directly from the outdoor unit to the coil inside the UTA.

Note:

If the third-party DDC controller generates only the 0-10 V demand indicator signal, the Haier wired controller is necessary to handle the following signals: Hot/cold operating mode, switching UTA on/off, alarms.

If the DDC controller generates all the necessary signals, the Haier controller is not required.

Control method "B"

The temperature is controlled by the third-party DDC, which sends the 0-10 V modulating signal to the Haier kit that will control the temperature set point.

Liquid/Gas refrigerant pipes, only the liquid pipe enters the valve box and then continues to the direct expansion coil. The Gas pipe goes directly from the outdoor unit to the coil inside the UTA.

Note:

If the third-party DDC controller only generates the 0-10 V signal corresponding to the required temperature set point, the Haier wired controller is necessary to handle the following signals: Hot/cold operating mode, switching UTA on/off, alarms. If the DDC controller generates all the necessary signals, the Haier controller is not required.

Control method "C", special applications

Configuring the system WITHOUT a third-party DDC. In this case, the Haier controller is necessary to make all the settings. This system requires the installation of an on/off thermostat that switches on or off the UTA when the temperature set point is reached. This "C" method is used to continuously heat or cool in an on/off manner, without modulation and therefore with less comfort in the environments.

Control method "D"

MRV and UTA mixed air conditioning system work in the same cooling circuit with MRV Haier and third-party UTA indoor unit. In this case Haier controller is required.

Liquid/Gas refrigerant pipes, only the liquid pipe enters the valve box and then continues to the direct expansion coil. The Gas pipe goes directly from the outdoor unit to the coil inside the UTA.

TECHNICAL SPECIFICATIONS

Primary air treatment unit with aluminium counter-current flow heat recovery unit with coil exclusively with direct expansion of standard refrigerant (no water option)

- · Centrifugal double-intake electric fans with directly coupled electric motor with high efficiency DC technology.
- Constant flow fans **OPTIONAL**.
- · Integrated thermal by-pass device.
- Sandwich type panel structure sp. 23 mm, sheet metal galvanised internally and pre-varnished externally with thermo-acoustic insulation polyurethane injected with a density of 45 kg/m³.
- Input module to be connected to VRF system with direct expansion coil with copper pipes and aluminium fins (R410A) equipped with expansion valve, filter, regulation probes on the refrigeration line and temperature probes upstream and downstream of the air flow.
- Sheet metal structure internally insulated by means of thermo-acoustic insulation, complete with stainless steel condensate collection tank.

- Filtering sections consisting of compact cell filters with medium density propylene for low pressure drop; can be removed sideways; in ISO $16890\,ePM1\,55\%$ efficiency class in the renewal flow, and $ePM10\,55\%$ in the discharge flow.
- Integrated dirty filter notification through pressure switch.
- · Condensate collection tank with lower drain connection which guarantees total drainage.

Model HACI-S		150	200	320	400	500
Rated air flow	m³/h	1500	2050	3200	3800	4700
Nominal useful static pressure	Pa	160	120	180	200	120
Maximum useful static pressure (8)	Pa	460	495	315	280	120
Power supply	V/ph/Hz			230 / 1 / 50-60		
Total maximum absorbed current	А	9.0	9.0	10.0	8.8	8.8
FANS		150	200	320	400	500
Motor type		EC	EC	EC	EC	EC
Speed No. (1)		Multiple	Multiple	Multiple	Multiple	Multiple
Ventilation control (1)		0-10V VSD	0-10V VSD	0-10V VSD	0-10V VSD	0-10V VSD
Specific indoor ventilation power - SFP indoor (5)	W/(m ³ /s)	1048	898	1040	949	902
Total nominal absorbed power	kW	0.76	0.84	1.77	1.78	2.11
Sound pressure level (2)	dB(A)	53	51	56	58	60
HEAT RECOVERY UNIT		150	200	320	400	500
Winter thermal efficiency (3)	%	83.3	83.7	86.8	84.1	84.2
Summer thermal efficiency (4)	%	75.1	75.6	78.0	75.0	75.1
Dry thermal efficiency (5)	%	75.6	76.0	76.3	75.5	75.6
DIRECT EXPANSION COIL 3 ROWS		150	200	320	400	500
Thermal power (6)	kW	8.6	11.3	17.3	20.4	23.6
Total cooling power (7)	kW	9.1	12.0	18.5	21.7	25.1
DIRECT EXPANSION COIL 4 ROWS		150	200	320	400	500
Thermal power (6)	kW	10.7	14.2	21.0	25.0	29.3
Total cooling power (7)	kW	12.0	15.4	23.2	28.0	32.3

⁽¹⁾ Multiple = Multispeed > 3

Man = Manually from selector or keyboard

0-10V = From potentiometer or keyboard

- VSD = Constant flow or modulation from the casing on the inspection side with delivery, discharge, intake and ducted outdoor air, under nominal conditions

 (2) Sound pressure level assessed at 1 m from the casing on the inspection side with delivery, discharge, intake and ducted outdoor air, under nominal conditions
- (3) Outdoor air -5°C 80% UR; ambient air 20°C 50% UR
- (4) Outdoor air 32°C 50% UR; ambient air 26°C 50% UR
- (5) According to EU regulation 1253/2014: at nominal pressure; temperature and humidity conditions referring to EN 308
- (6) Coil input air: 13°C BS, 40% RH; condensation 40°C
- (7) Coil input air: 28°C BS, 50% RH; evaporation 7°C
- (8) With 3 rows coil

HACI-S 700 HACI-S 880 **HACI-S 1000 HACI-S 1300 HACI-S 1500**

TECHNICAL SPECIFICATIONS

- · Primary air treatment unit with static aluminium air-to-air heat recovery unit for counter-current flows with thermal efficiency of up
- Constant flow fans available as an option
- · For floor or roof installation
- Integrated thermal by-pass device
- Extruded aluminium profile frame with preloaded nylon knot joints
- Sandwich-type 48 or 60 mm thick buffer panels, pre-varnished externally and galvanised internally with insulation polyurethane injected with a density of 45 kg/m³
- G4-class synthetic pre-filters and fiberglass F7 hard pocket filters on input air, M5 efficiency filter on discharge air

- Integrated dirty filter notification through pressure switch
- Centrifugal fans with free impeller with backward curved blades directly coupled to a high efficiency electric motor with DC technology
- Section prepared for water or direct expansion post-treatment coils and for the eventual insertion of steam generators and distributors
- Technical compartment for coil regulation valve housing and steam
- · Full electrical adjustment panel and control panel

Model HACI-S		700	880	1000	1300	1500
Rated air flow	m³/h	6900	8800	10500	12600	15000
Nominal useful static pressure	Pa	200	200	200	200	200
Maximum useful static pressure	Pa	645	945	740	865	760
Power supply	V/ph/Hz		400 / 3+N /	50-60 (5 wires L1+L	2+L3+N+T)	
Total maximum absorbed current	А	9.6	15.6	15.6	22.4	22.4
FANS		700	880	1000	1300	1500
Motor type		EC	EC	EC	EC	EC
Speed No. (1		Multiple	Multiple	Multiple	Multiple	Multiple
Ventilation control (1)		0-10V	0-10V	0-10V	0-10V	0-10V
Specific indoor ventilation power - SFP indoor	W/(m³/s)	825	718	849	774	788
Total nominal absorbed power	kW	2.90	6.88	8.97	10.25	12.31
Sound pressure level (2)	dB(A)	61	63	62	63	64
HEAT RECOVERY UNIT		700	880	1000	1300	1500
Winter thermal efficiency (3)	%	76.2	76.6	78.3	76.4	77.0
Summer thermal efficiency (4)	%	75.6	75.9	77.6	75.8	76.3
Dry thermal efficiency (5)	%	76.0	76.4	78.1	76.2	76.8

 $^{(1) \}quad \text{Multiple} = \text{Multispeed} > 3; \\ \text{Man} = \\ \text{Manual from selector or keyboard}; \\ \text{0-10V} = \\ \text{From potentiometer or keyboard}; \\ \text{VSD} = \\ \text{Constant flow or modulation by air quality / humidity } \\ \text{Multiple} = \\ \text{Multispeed} > 3; \\ \text{Man} = \\ \text{Manual from selector or keyboard}; \\ \text{Multiple} = \\ \text{Multispeed} > 3; \\ \text{Man} = \\ \text{Manual from selector or keyboard}; \\ \text{Multiple} = \\ \text{Multispeed} > 3; \\ \text{Man} = \\ \text{Multispeed} > 3; \\ \text{Multiple} = \\ \text{Multiple} = \\ \text{Multispeed} > 3; \\ \text{Multiple} = \\ \text{Mu$

 $Sound pressure level \ rated \ at \ 1m \ by: ducted \ delivery-discharge \ / \ ducted \ external \ air \ return \ / \ inspection \ side \ at \ nominal \ conditions$

Outdoor air -5°C 80% UR; ambient air 20°C 50% UR (3)

Outdoor air 32°C 50% UR; ambient air 26°C 50% UR (4)

According to EU regulation 1253/2014: at nominal pressure; temperature and humidity conditions referring to EN 308.

DIMENSIONS AND WEIGHTS

Air intake and delivery vents will be arranged according to the annexed drawing; inspections can be performed on both sides while any standard connections are performed on the performance of the perfof the optional coil are at the left side of the input airflow.

Model HACI-S		Waisht (ks)		
	A (mm)	B (mm)	C (mm)	Weight (kg)
700	3900	1820	2000	1580
880	4350	2100	2190	1900
1000	4350	2100	2190	2000
1300	4500	2100	2320	2240
1500	4800	2200	2320	2500

Legend	
1	Filter G4
2	Recovery unit
3	Intake fan
4	Discharge fan
5	Coil 2/4 row optional
6	F7 final filter
7	Electrical panel

Illustrative representation, dimensions and orientations will be defined at the time of order.

MOBILE AIR CONDITIONING UNIT

WHEELED MONOBLOCK HEAT PUMP

INDUSTRIAL MOBILE UNIT Wheeled Monoblock Heat Pump

HACI-MB35E

INTRODUCTION

The reversible monobloc wheeled heat pump units for HACI-MBE air conditioning are specifically designed for air treatment (summer air conditioning and winter heating) of removable tensile structures. They are designed to be easily transported, connected to the plant in slave mode and put into service; they are suitable for external installation.

They are equipped with an internal electrical panel and are powered only by electricity.

Easy handling is allowed by the orientable and braking rubber wheels (with bearings), which are also suitable for slightly irregular pavements (e.g. asphalt, rough concrete).

Internal air intake and delivery vents are easily connected to the ducts with the possibility of screwing them to the sturdy aluminium frame

The HACI-MBE units are equipped with high-efficiency scroll compressors and internal fans powered by high-prevalence DC motors, with synchronous technology that ensures less energy consumption, offering greater features more advanced and accurate in the electronic adjustment.

TECHNICAL SPECIFICATIONS

- Extruded aluminium profile frame, Anti-corodal alloy 63, with preloaded nylon knot joints.
- Sandwich type buffer panels sp. 23 mm, sheet metal galvanised internally and pre-varnished externally (RAL 9010) with thermo-acoustic insulation polyurethane injected with a density of 9010 kg/m^3
- Filtration sections at the intake which can be equipped with a control pressure switch, consisting of filters with synthetic cells in efficiency class G4 sp. 48 mm; removable laterally.
- HACI-MBE double intake centrifugal electric fans with forward curved blades, directly coupled with DC high efficiency synchronous electric motor with rotation speed control electronics already integrated in the fan. It offers the possibility of setting a constant flow rate of the air to be treated, regardless of pressure drops (within the limits of the maximum prevalence of the fan).
- Refrigerant heat pump circuit (R410A) consisting of hermetic scroll compressor with on / off regulation, reversible evaporating and condensing coils with copper pipes and continuous aluminium fins, electronic expansion valve, liquid receiver, 4-way valve for inversion cycle, high and low pressure switches, refrigerant dehydrating filter,
- Internal electrical panel for load management; NTC type temperature probes on both air circuits; electronic microprocessor control for automatic management of the ambient temperature (input in the case of continuously variable capacity compressor), free-cooling (optional), hot / cold switching and defrosting cycles; remote control panel up to 30m from the unit, already implemented with Modbus RTU protocol for communication with the supervision system.

Model HACI-MB		35E				
Rated air flow	m³/h	8000				
Useful static pressure delivered	Pa	120 (on request, version with 500 Pa)				
Sound power level (1)	db (A)	74				
OPERATING LIMITS						
Outdoor temperature / indoor intake temperature HEATING (2)	°C/%	Min-7°C Outdoor / min 19°C Indoor and 50% humidity				
Outdoor temperature / indoor intake temperature COOLING (2)	°C/%	Max 40°C Outdoor / Max 28°C Indoor				
Flow variation field	%	± 10 %				
Maximum percentage of outdoor air to be treated (6)	%	30 %				
ELECTRICAL DATA						
Power supply	V/ph/Hz	400/3/50 (5 wires L1+L2+L3+N+T)				
Maximum absorbed current	А	32 / (45 with 500 Pa motors)				
PERFORMANCE IN HEATING (7)						
Thermal power	kW	34.0				
COP (4)		4.4				
nput temperature	°C	34				
PERFORMANCE IN COOLING (5)						
Total cooling power	kW	32.1				
Sensitive cooling power	kW	25.6				
EER (4)		2.9				
nput temperature	°C	17.5				
COOLING CIRCUIT						
Refrigerant - GWP		R410A				
Number of circuits		1				
Refrigerant charge	Kg	7.4				
CO₂ equivalent	Ton	14.5				

- (1) Machine's global sound power levels in operation under nominal conditions, with ducted delivery and intake flows (2) Referred to nominal flow
- (3) Outdoor air 7°C 90% RH; ambient air 20°C 50% RH (EN14511)
- (4) Excluding the power absorbed for ventilation
- (5) Outdoor air 35°C 40% RH; ambient air 27°C 47% RH (EN14511)
- (6) With SP2 accessory
- $With outdoor temperatures below 8^{\circ}C, it is necessary to install self-supporting electric resistances KIT to guarantee nominal heating performance and the self-supporting electric resistances are self-supporting electric resistances. \\$

APPLICATION SAMPLE

A mm 1170 B mm 1150 C mm 1830 D mm 1800 E mm 1780 F mm 1960 G mm 2140 H (for transport only) mm 863 L mm 1225 M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282 Weight Kg 550	DIMENSIONS AND WEI	Model HACI-MB35E		
C mm 1830 D mm 1800 E mm 1780 F mm 1960 G mm 2140 H (for transport only) mm 2160 I mm 863 L mm 1225 M mm 288 M1 mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	Α	mm	1170	
D mm 1800 E mm 1780 F mm 1960 G mm 2140 H (for transport only) mm 2160 I mm 863 L mm 1225 M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	В	mm	1150	
E mm 1780 F mm 1960 G mm 2140 H (for transport only) mm 2160 I mm 863 L mm 1225 M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	С	mm	1830	
F mm 1960 G mm 2140 H (for transport only) mm 2160 I mm 863 L mm 1225 M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	D	mm	1800	
G mm 2140 H (for transport only) mm 2160 I mm 863 L mm 1225 M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	E	mm	1780	
H (for transport only) I mm 863 L mm 1225 M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	F	mm	1960	
I mm 863 L mm 1225 M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	G	mm	2140	
L mm 1225 M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	H (for transport only)	mm	2160	
M mm 288 M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	I	mm	863	
M1 mm 296 M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	L	mm	1225	
M2 mm 465 M3 mm 331 M4 mm 391 M5 mm 282	М	mm	288	
M3 mm 331 M4 mm 391 M5 mm 282	M1	mm	296	
M4 mm 391 M5 mm 282	M2	mm	465	
M5 mm 282	M3	mm	331	
	M4	mm	391	
Weight Kg 550	M5	mm	282	
	Weight	Kg	550	

1 Filter G4 ambient air 2 Delivery fan 3 External fans 4 Reversible indoor 3R coil (summer evaporator) 5 Reversible outdoor coil 6R (summer condenser) 6 Compressor 7 Electrical panel 8 Intake of ambient air to be treated 9 Ambient air delivery 10 Outdoor air 11 Outdoor air discharge	LEGEN	ID
3 External fans 4 Reversible indoor 3R coil (summer evaporator) 5 Reversible outdoor coil 6R (summer condenser) 6 Compressor 7 Electrical panel 8 Intake of ambient air to be treated 9 Ambient air delivery 10 Outdoor air 11 Outdoor air discharge	1	Filter G4 ambient air
4 Reversible indoor 3R coil (summer evaporator) 5 Reversible outdoor coil 6R (summer condenser) 6 Compressor 7 Electrical panel 8 Intake of ambient air to be treated 9 Ambient air delivery 10 Outdoor air 11 Outdoor air discharge	2	Delivery fan
5 Reversible outdoor coil 6R (summer condenser) 6 Compressor 7 Electrical panel 8 Intake of ambient air to be treated 9 Ambient air delivery 10 Outdoor air 11 Outdoor air discharge	3	External fans
6 Compressor 7 Electrical panel 8 Intake of ambient air to be treated 9 Ambient air delivery 10 Outdoor air 11 Outdoor air discharge	4	Reversible indoor 3R coil (summer evaporator)
7 Electrical panel 8 Intake of ambient air to be treated 9 Ambient air delivery 10 Outdoor air 11 Outdoor air discharge	5	Reversible outdoor coil 6R (summer condenser)
8 Intake of ambient air to be treated 9 Ambient air delivery 10 Outdoor air 11 Outdoor air discharge	6	Compressor
9 Ambient air delivery 10 Outdoor air 11 Outdoor air discharge	7	Electrical panel
10 Outdoor air 11 Outdoor air discharge	8	Intake of ambient air to be treated
11 Outdoor air discharge	9	Ambient air delivery
	10	Outdoorair
	11	Outdoor air discharge
12 Electric post-heating coil (optional)	12	Electric post-heating coil (optional)

Control & Management **Systems**

CONTROL AND MANAGEMENT SYSTEMS Features

SIMPLE AND INTUITIVE SOLUTIONS TO MANAGE PLANTS

A SINGLE INTEGRATED SYSTEM

Haier's communication protocol is unique to MRV systems and the residential and commercial products of the Supermatch line. This allows the same controls to be used for both small and large MRV plants.

MANAGEMENT AND SUPERVISION

Haier provides reliable and professional supervision systems for better management of preventive maintenance as well.

"SMART" CONTROLS

Systems that can be customised to meet your needs.

CONTROL SYSTEMS

CENTRALISED CONTROL

The centralised controls provide a customised control of the entire system from a single point. Manage individual units, groups, or zones and define different settings for each of them.

- Possibility to control via WEB/Internet by means of optional Wi-Fi module HI-WA164DBI
- Intelligent system for plants up to 64 indoor units
- 5" LCD TFT full touchscreen display backlit
- · Built-in weekly timer
- · Possibility of naming units and groups
- Displaying alarms
- Require HA-MA164AD converter (see diagrams on page 129)
- 32 independent cooling circuits, each with their own HA-MA164AD converter
- Ability to simultaneously control MRV units and line units Supermatch / Residential
- · MOD-BUS output as standard

YCZ-A004

- · Smart system for medium size plants up to 256 indoor units
- · Large 7" LCD TFT full touchscreen display
- Built-in weekly timer
- Possibility of naming units and groups
- · Displaying alarms
- Require HA-MA164AD converter (see diagrams on page 129)
- 32 independent cooling circuits, each with their own HA-MA164AD converter
- · You cannot control MRV units and Supermatch/Residential line units at the same time.
- · MOD-BUS output as standard

HA-MA164AD

- · Haier protocol converter to RS-485
- To be connected to centralised systems (not required for series 5 outdoor units)
- Each cooling circuit needs 1 converter (see diagrams from page 129)
- 1 converter can handle max 64 internal units on single cooling circuit
- This accessory, if NOT connected to a centralised controller as a dedicated converter, can be used individually to transform the communication protocol "Homebus Haier" into "MOD-BUS". (For this feature, configure the selectors in the desired mode)

HI-WA164DBI WI-FI MODULE

Features:

This module, connected to an Internet access with Wi-Fi, allows remote control via dedicated APP on tablets and smartphones (no PC).

Each Wi-Fi module can control up to 64 indoor units.

Through the APP, the same functionality as the centraliser, connected to the MRV system, is replicated and managed.

Specifications:

- Compact 86x86x10 mm
- Control functions, on/off, temperature setting, timer settings, weekly, fan speed.
- · Alarm monitoring function, errors, error history.
- · User account management, including account registration, password change and account information modification via APP.
- · Convenient sharing of the management authority. The primary account can share the management of the primary account with the secondary accounts, without re-registering the units.
- · Each individual APP can handle up to 256 indoor units.
 - Example: 4 Wi-Fi modules with 64 Interior each, or 7 Wi-Fi modules with 36 interiors each
- If a HC-SA164DBT centralised controller is used directly, the Wi-Fi module can be connected directly to the centraliser on a dedicated terminal.
- The Wi-Fi module can be connected directly to the MRV series 5 outdoor units, or to the HA-MA164AD converter if the outdoor units are NOT series

With this configuration it is possible to control the MRV system even without local centralised controllers, using only the APP installed on tablet or smartphone, by ensuring stable and fast Wi-Fi coverage to the module.

CONTROL SYSTEMS

CONTROL AND MANAGEMENT SYSTEMS Features

HC-SA164DBT

- \bullet Control of the operating mode, temperature, ventilation,
- \bullet Error control and alarm memory

- Daily and weekly programming for single unit
- \bullet Free and independent programming

• Monitoring the status of each individual unit

• Password setting at different levels of operation

YCZ-A004

Power-saving function

- User function locking mode
 Defining lower and upper limits for desired temperature selection

- 26

Monitoring and control

- Control of up to 256 indoor units
- Control of the operating mode, temperature, ventilation,
- deflectors
 Icons displayed similar to those on remote commands

Zone management

• Defining zones as per user requests

Timer programmer

- Daily and weekly programming for single unit Free and independent programming

HI-WA164DBI WI-FI MODULE FOR CENTRALISED CONTROLLER HC-SA164DBT

Configuration with centraliser

Configuration without centraliser

 $The \ Wi-Fi module \ can be connected \ directly \ to \ the \ MRV \ series \ 5 \ outdoor \ units, or \ to \ the \ HA-MA164AD \ converter \ connected \ to \ other \ non-series \ 5 \ MRV \ series \ 5 \ M$ outdoor units.

With this system you can control the MRV system even without a centraliser installed, but through the APP alone by ensuring adequate Wi-Fi coverage to the module.

CONTROL AND MANAGEMENT SYSTEMS Features

WI-FIFEATURES

This module, connected to an Internet access with Wi-Fi, allows remote control via dedicated APP on tablets and smartphones (no PC). Each Wi-Fi module can control up to a maximum of 64 indoor units, which is the limit of the centraliser. Through the APP, the same functionality as the centraliser, connected to the MRV system, is replicated and managed.

SPECIFICATIONS:

- Compact 86x86x10 mm
- It is connected to the centraliser through the cable supplied, from which it is powered.
- It can be connected up to 100 meters from the centraliser, so as to reach an area covered by Wi-Fi
- Control functions, on/off, temperature setting, timer settings, weekly, fan speed.
- Alarm monitoring function, errors, error history.
- · User account management, including account registration, password change and account information modification via APP.
- · Convenient sharing of the management authority. The primary account can share the management of the primary account with the secondary accounts, without re-registering the units.
- Each individual APP can handle up to 256 indoor units. Example: 4 Wi-Fi modules with 64 Interior each, or 7 Wi-Fi modules with 36 interiors each
- The Wi-Fi module can be connected directly to the MRV series 5 outdoor units, or to the HA-MA164AD converter if the outdoor units are NOT series

With this system you can control the MRV system even without a centraliser installed, but through the APP alone by ensuring adequate Wi-Fi coverage to the module.

• The APP is available for Android and iOS.

CONNECTION OF CENTRALISED CONTROLLERS DIRECTLY TO OUTDOOR UNITS

CONNECTION OF CENTRALISED CONTROLLERS IN AN INTERNAL POINT OF THE PLANT In this configuration, the 5 series units also require the HA-MA164AD accessory

CONNECTION OF CENTRALISED CONTROLLERS IN MIXED MRV AND SUPERMATCH SYSTEMS Only for HC-SA164DBT

CONNECTION OF CENTRALISED CONTROLLERS TO SYSTEMS COMPOSED ONLY OF SUPERMATCH UNITS

Haier offers different types of remote controllers to choose from based on your functional and design requirements.

YR-HBS01

- On/off, temperature mode, deflectors
- · Independent control
- 5 selectable ventilation speeds
- Independent control of deflectors [[only for cassette AB-MRERA-MCERA(M)]
- · Daily clock and timer

YR-HD01

- · On/off, temperature mode, deflectors
- · Independent control
- Timer function on-off-on/off-off/on hour counter (no clock)

RE-02

- Universal receiver for wireless remote controllers
- Required for all units installed in the concealed position, without aesthetic panel.
- Only the 2-way cassette requires the receiver even if equipped with an aesthetic panel.

HW-BA116ABK

- · On/off, temperature mode, deflectors
- · Limited features ideal for hotels
- Filter cleaning interval indication
- NOT equipped with a clock or timer
- · On-board receiver for wireless infrared remote controllers, to create a double control mode (see diagram on page 135)
- · Standard ambient temperature sensor. Select the ambient temperature control on the controller if you want a more accurate reading at standing height or in particular installation conditions.
- Possibility of group management with a single controller, (max 16 indoor units on a single controller), the functions and operating modes of all the indoor units connected to that controller will be $identical \ to \ each \ other. \ Independent \ management \ is \ not \ possible. \ Each \ command \ will \ be \ replicated$ on all indoor units connected to that controller in the same way. (see diagrams on page 135)

YR-E17

- On/off, temperature mode, deflectors
- Smart and compact design with only 86x86x13 mm.
- Touch keys with large backlit display
- Independent control of deflectors [[only for cassette AB-MRERA-MCERA(M)]
- · Daily clock and timer
- Simple installation and intuitive operation
- PA static pressure management of indoor unit fans (on models where possible)
- · Standard ambient temperature sensor. Select the ambient temperature control on the controller if you want a more accurate reading at standing height or in particular installation conditions.
- Possibility of group management with a single controller, (max 16 indoor units on a single controller), the functions and operating modes of all the indoor units connected to that controller will be $identical \ to \ each \ other. \ Independent \ management \ is \ not \ possible. \ Each \ command \ will \ be \ replicated$ on all indoor units connected to that controller in the same way. (see diagrams on page 135)

HW-BA101ABT

- Modern, high-intensity LED design
- Full touch black display. Automatic lighting when the keys are pressed. Black screen at rest position.
- NOT equipped with a clock or timer
- Double temperature and fan speed setting mode: a continuous infinite range or by acting on the classic + and -
- Quiet operation
- Operating mode, deflectors in on / off mode
- Possibility of group control of up to 16 indoor units with the same operating mode
- · Limited features ideal for hotels
- · Filter cleaning interval indication
- · Error control
- Function block from centraliser
- On-board receiver for wireless infrared remote controllers, to create a double control mode (see diagram on page 135)
- Standard ambient temperature sensor. Select the ambient temperature control on the controller if you want a more accurate reading

- at standing height or in particular installation conditions.
- Possibility of group management with a single controller, (max 16 indoor units on a single controller), the functions and operating modes of all the indoor units connected to that controller will be identical to each other. Independent management is not possible. Each command will be replicated on all indoor units connected to that controller in the same way.

(see diagrams on page 135)

YR-E16B

- On/off, temperature mode, deflectors
- · Large backlit touch screen display
- Independent control of deflectors [only cassette AB-MRERA-MCERA(M)]
- Weekly clock and timer
- Alarm history
- Fan static pressure management function
- Selection between Celsius and Fahrenheit, (+/- 0,5 °C +/- 1 °F)
- Standard ambient temperature sensor. Select the ambient temperature control on the controller if you want a more accurate reading at standing height or in particular installation conditions

Possibility of group management with a single controller, (max 16 indoor units on a single controller), the functions and operating modes of all the indoor units connected to that controller will be identical to each other. Independent management is not possible. Each command will be replicated on all indoor units connected to that controller in the same way. (see diagrams on page 135)

KZW-W001 Wi-Fi module for individual units

- Ideal for small plants with stable Wi-Fi coverage that reaches all indoor units. The end user and/ or user of the system must ensure their own Wi-Fi coverage that has access to the internet.
- The module must be installed and connected to the electronic board of the MRV series indoor units that you want to control with Wi-Fi.
- The user will have to download the APP "Haier Smart Air" for android, create a profile and then register each individual indoor unit following the step-by-step instructions that the APP shows on the screen.
- Control: on/off, mode, temperature, deflectors, fan speed, weekly timer, function check, generic alarm signalling.
- By carrying out a group management with the wired controllers, (max 16 indoor units on a single controller), only one Wi-Fi module will have to be installed on the Master unit which

will be the one where the wired controller will be connected. In a group management with a single wired controller, the functions and operating modes of all the internal units connected to that controller will be identical to each other. Independent management is not possible. As for the wired controller, also by acting through the web with the APP, each command will be replicated on all the indoor units connected to that Wi-Fi controller / module in the same way. (see diagrams on page 135)

EXAMPLES OF CONNECTION OF REMOTE CONTROLLERS AND WI.FI MODULES

Example of single controller connection for independent operation of each indoor unit

Example of group controller (only for wired controllers - max 16 indoor units on a single controller)

In a group management with a single wired controller, the functions and operating modes of all the internal units connected to that controller will be identical $to \ each \ other. \ Independent \ management is \ not possible. \ Each \ command \ given \ will \ be \ replicated \ on \ all \ the \ indoor \ units \ in \ the \ same \ way.$

Example of a Wi-Fi module connection, for independent operation of each indoor unit

Example of group management through Wi-Fi module

Connect only one Wi-Fi module on the same Master unit, where the group wired controller is connected. Each command given through the APP, as for a group wire controller, will be replicated in the same way on all the indoor units connected to that wi-fi controller / module

Infrared receiver on controller.

Wired controller models: HW-BA101ABT, HW-BA116ABK, are equipped with receiver for wireless remote

This function allows you to control an indoor unit with the wired controller and with a remote control simultaneously. (example: wired controller on the wall and remote controller on the desk or on the bedside.)

INTEGRATED MANAGEMENT SYSTEM FOR MEDIUM AND LARGE BMS PLANTS

- MRV plant supervision and management system for local use on PC.
- RS-485 protocol converter in RS-232 via USB adapter for local use on PC
- Control max 400 units and/or maximum 32 independent cooling circuits
- Each cooling circuit requires HA-MA164AD adapter (except for outdoor unit series 5)
- Management of all system parameters by zones / groups / individual units, weekly and monthly timers, error management and alarm history.
- · Clear and intuitive visualisation software
- · DOES NOT allow management via web/Internet
- The software works on Windows platform (7 32/64 bits- 8 Pro -10 Pro)
- The software has a license for use on a single PC. If you plan to use on two or more PCs, you need to purchase 2 or more licenses
- · Possibility of accounting for electricity consumption. Providing IGU-02 adapters instead of HA-MA164AD. One IGU-02 for each cooling circuit, also for series 5 outdoor units. For each cooling circuit / IGU-02, a "Wattmeter / pulse generator" must be provided which detects the energy absorption of the outdoor units and proportionally generates counting pulses that the IGU-02 adapter receives and transforms into values to be managed and visualised by the software.

(the pulse generator wattmeter / ammeter is not supplied by Haier, as it must be selected and sized according to the power of the plants).

Indicative diagram for local management with HCM-01A

Indicative diagram for local management with HCM-01A and consumption accounting

HCM-05 / HCM-05A medium plant management system with WEB / Internet control function Integrated system for plants up to 250 internal units and up to 500 for the 05A model

- · Local control over the network from PC or remotely via web/internet.
- Each HCM-05 adapter is equipped with a web browser integrated with a specific IP address. Requires a connection to a network with internet access, via ethernet cable. Once configured, anywhere in the world simply enter the IP address supplied with the HCM-05 in the web search engine Google Chrome to access the system to be controlled. Access to specific system management is protected by multi-level passwords.
- Possibility of communication with systems, not supplied by Haier, through the BACnet IP protocol.
- Max 250 indoor units that can be controlled with the HCM-05 model and a maximum 500 indoor units that can be controlled with the HCM-05A model.
- · Up to a maximum of 32 independent cooling circuits can be controlled. Each cooling circuit requires HA-MA164AD adapter (except for outdoor unit series 5)
- · Management of all system parameters by zones / groups / individual units, weekly and monthly timers, error management and alarm history. Clear and intuitive visualisation software
- · Possibility of accounting for electricity consumption. Providing IGU-02 adapters instead of HA-MA164AD. One IGU-02 for each cooling circuit, also for series 5 outdoor units. For each cooling circuit / IGU-02, a "Wattmeter / pulse generator" must be provided which detects the energy absorption of the outdoor units and proportionally generates counting pulses that the IGU-02 adapter receives and transforms into values to be managed and visualised by the software.

(the pulse generator wattmeter / ammeter is not supplied by Haier, as it must be selected and sized according to the power of the plants).

Illustrative diagram for management via WEB with HCM-05

Illustrative diagram for management via WEB with HCM-05 with consumption accounting

Monitoring

Independent control of up to 500 indoor units

- Mode, temperature, ventilation, deflectors
- Blocking of user functions
- Controlling of blocking levels
- An icon with all the information for each individual unit

ਕਾਵਰੀ ਕਾਵਰੀ ਕਾਵਰੀ

Energy consumption report for each unit

- Possibility of defining different costs by usage ranges
- Preview and print the results
- Comparison of operating costs over time

NT

SHIC @

24.C @

Programming

- Weekly and monthly schedule graph
- Free configuration
- Defining sample programmes

Zone control

• Creation of zones for management that can be customised according to the requests

Alarm management

- History of alarm messages
- Detail of every single alarm

System configuration

- Building-based configuration
- Equipment configuration
- Management of access levels
- Management of parameters

HCM-03A large plant management system with WEB/Internet control function Integrated system for plants up to 1500 indoor units

- · Local control over the network from PC or remotely via web/internet.
- Each HCM-03A adapter is equipped with a web browser integrated with a specific IP address. Requires a connection to a network with internet access, via ethernet cable. Once configured, anywhere in the world simply enter the IP address supplied with the HCM-03 in the web search engines Google Chrome or Firefox to access the system to be controlled. Access to specific system management is protected by multi-level passwords.
- · Possibility of communication with systems, not supplied by Haier, through the BACnet IP, Modbus protocol
- · Max 1500 controllable indoor units.
- Up to 20 independent cooling circuits can be connected to one of the four available ports, in order to obtain a system that provides a maximum of 80 circuits. Each cooling circuit requires HA-MA164AD adapter (except for outdoor unit series 5)

· Possibility of accounting for electricity consumption. Providing IGU-02 adapters instead of HA-MA164AD. One IGU-02 for each cooling circuit, also for series 5 outdoor units. For each cooling circuit / IGU-02, a "Wattmeter / pulse generator" must be provided which detects the energy absorption of the outdoor units and proportionally generates counting pulses that the IGU-02 adapter receives and transforms into values to be managed and visualised by the software.

(the pulse generator wattmeter / ammeter is not supplied by Haier, as it must be selected and sized according to the power of the plants).

- Possibility to insert the building layout as a file in the HCM-03A system to create specific command buttons within the reference rooms via the loaded floor plan
- Technology developed in collaboration with MAC mini.

Illustrative diagram for management via WEB with HCM-03A.

Illustrative diagram for management via WEB with HCM-03A with consumption accounting

Building layouts can be inserted as a file in the HCM-03A system to configure by positioning the specific indoor unit and the dedicated controller.

The creation of specific command buttons inside the premises allows direct management of the floor plan, simulating reality more accurately which makes everything more intuitive and simple.

CONTROL AND MANAGEMENT SYSTEMS Features

HA-MA164AD - MOD-BUS adapter

- Haier to MOD-BUS protocol converter (not required for series 5 outdoor units)
- · Each cooling circuit requires 1 converter
- 1 converter can handle max 64 indoor units on single cooling circuit
- Power supply transformer included
- It is not possible to account for electricity consumption

IGU02 - adaptor to account for consumption

- Haier protocol converter to RS-485 to be used in conjunction with BMS systems: HCM-01A / 03A / 05-05A, necessary if you want to monitor the electrical consumption of MRV systems.
- Each IGU-02 can control up to a maximum of 40 indoor units
- You need an IGU-02 for each cooling circuit, even for outdoor 5 series. For each cooling circuit / IGU-02, a "Wattmeter / pulse generator" must be provided which

detects the energy absorption of the outdoor units and proportionally generates counting pulses that the IGU-02 adapter receives and transforms into values to be managed and visualised by the software.

(the pulse generator wattmeter / ammeter is not supplied by Haier, as it must be selected and sized according to the power of the plants).

IGU07 - LonWorks adapter

- Modbus > Lonworks protocol converter
- Each IGU-07 can control only 1 cooling circuit and up to a maximum of 32 indoor units
- The cooling circuit connected require adapter HA-MA164AD (except for series 5 outdoor units)
- The IGU07 adapter does not have a power transformer, therefore it is necessary to have a 24 Volt DC power supply (24 VDC) fitted by the installer.
- It is not possible to account for electricity consumption

HA-AC-KNX - KNX adapter

- · Haier to KNX protocol converter
- Requires HA-MA164AD adapter
- 3 available models, up to 8, up to 16 and up to 64 controllable indoor units (HA-AC-KNX-8, HA-AC-KNX-16, HA-AC-KNX-64)
- Does not require power supply

EXAMPLES OF CONNECTION ADAPTERS

Model	Gas Side Joint	Liquid Side Joint	Gas Side Adapters included in the kit	Liquid side adapters included in the kit	Applicable kW power (total sum of the nominal cooling powers of the indoor units to be powered downstream of the joint)
FQG-B335A	384 27 28 27 28 27 28 29 20 20 20 20 20 20 20 20 20	238 100 100 100 100 100 100 100 10	412.7 119.7 119.8 1012.9 119.7 1102.9 1102.9 1102.9 1102.9	<u>Φ6.35</u> F ₅ <u>Φ6.35</u> F ₅ <u>D9.7</u> F ₅	Up to 33.5
FQG-B506A	323 7 7 8 9 9 9 1022. 22 1029. 4 1019. 3 1016. 1 1012. 9	238 238 238 240 250 250 250 250 250 250 250 25	028.58 1025.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	96.35 EST	33.5 to 50.6
FQG-B730A	323 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	388 	028.58 1025.6 1012.3 1012.9 1012.9 1012.7	SH Ф6.35 IIID9.7	50.6 to 73
FQG-B1350A	366 57 188 628.6 1D28.8	405 405 1016.1 1017.3 1018.3 1018.3 1018.3 1018.4 1018.3 1018.3 1018.3 1018.4 1018.3 1018.4 1018.3 1018	022. 22 1019.3 E 1022.4 1010.3 E 1019.3 E 1012.4 E 1012	Φ6.35 57	73 to 135
FQG-B2040A	485 801 1 150 150 150 150 150 150 150 150 150	270 270 270 270 271 271 281 290 201 201 201 201 201 201 20	95 944.5*1.5	•12,7•0.6 N	Over 135

SOLDER JOINTS TO CREATE COOLING CIRCUITS

Joints for 3-pipe circuit - indoor unit side

Model	Gas Side Joint Recovery/Return	Gas Side Joint High Pressure	Liquid Side Joint	Adapters side Gas Recovery/Return included in the kit	Adapters Side Gas High Pressure included in the kit	Adapters Side Liquid included in the kit	Applicable Power in kW (total sum of the nominal cooling powers of the indoor units to be powered downstream of the joint)
FQG-R335A	384 384 386 387 387 388 388 388 388 388 388	384 384 384 384 386 1000	238 1780 1	7,2100 109,7 100 1015,88 100 1	7,100 7,200 107,800	OD6.35 ID9.7 59 OD6.35 ID9.7 59	Up to 33.5
FQG-R506A	323 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	323 200 200 200 200 200 200 200	238 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0	0028.56 H 100.56.1 H 100.10.50.1 H 100.10.1 H 100.1 H	25.6 6 10 10 10 10 10 10 10 10 10 10 10 10 10	OD6.35	33.5 to 50.6
FQG-R730A	323 2 2 2 2 3 4 4 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	323 27 27 27 27 27 27 27 27 27 27	388 21 1 6 1 7 6	180 180 1018-1 1	180 180 1926.4 1919.3 1	25. 900 109.7 159	50.6 to 73
FQG-R1350A	366 527 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	366 \$27 1800 0028.6 0028.8	405 100 100 101	000222 00123	0002.22 0003.22 0012.9	006.36 109.7	73 to 135
FQG-R2040A	100 C C C C C C C C C C C C C C C C C C	100 mm x 17		THE STATE OF THE S	112 - 2011 31 30 20 12 112 - 2011 113 30 20 12 114 30 20 12 115 30 20 12 116 30 20 12 117 30 20 12 118 30	#15 10 2 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Over 135

Model	Pipes	Branch	Adapter, Included in the kit	Applicable power in kW (total sum of the nominal cooling powers of the indoor units connected to the collector)	
FQG-H3704	Gas	4 3 3 120	① ② ③	up to 30 total (sum of all outputs) If you need to connect indoor units with power exceeding 5.6 kW, you must use model FQG-	
	Liquid	2 93		H3705 with more than 5 outputs for pipe diameter requirements	
FQG-H3705	Gas	500 3 6 7 8 3 170		up to 30 total (sum of all outputs)	
	Liquid	3 2 110			
FQG H3708_35kW	Gas	615 4 3 6 3 4 3 180		up to 35 total (sum of all outputs)	
	Liquid	1 3 2 93			
FQG-H3708_70kW	Gas	710	7664 // 1PZ	up to 70 total (sum of all outputs)	
	Liquid	3 4 1 1 110	②③ 1PZ		

Diameters in inches (")									
1	6.35 mm 1/4"	5	19.05 mm 3/4"	9	31.75 mm 1"1/4	13	44.45 mm 1"3/4		
2	9.52 mm 3/8"	6	22.40 mm 7/8"	10	34.92 mm 1"3/8	14	50.80 mm 2"		
3	12.70 mm 1/2"	7	25.40 mm 1"	11	38.10 mm 1"1/2				
4	15.88 mm 5/8"	8	28.57 mm 1"1/8	12	41.28 mm 1"5/8				

SOLDER JOINTS TO CREATE COOLING CIRCUITS

Joints to combine outdoor units with 2 tubes.

HZG-20B - kit to be provided to combine 2 modules

Model	Pipes	ID	Branch	Gas Side Adapters Recovery/Return included in the kit
HZG-20B	Gas Side Joint	A	355 ¹⁵ 355 ¹⁵ 428.5841.1 35 ¹⁶ 98.881.1 310 98.881.1 310 98.881.1 310 98.881.1 310 98.881.1 310 98.881.1 310 98.881.1	Φ 28, 58+1.1 Q 0 Q
	Liquid Side Joint	В	235 ⁴⁵ 247 415,88+1 247 415,88+1 247 415,88+1 247 415,88+1 247 247 241 247 247 247 247 24	101

HZG-30B - kit to be provided to combine 3 modules

Model	Pipes	ID	Branch	Gas Side Adapters Recovery/Return included in the kit
HZG-30B	Gas Side	С	355°5	CD28.58*1.1
	Joint	D	383 ⁻²	-Double -
	Liquid Side Joint	E	235 ¹ / ₂	0015,88°1 42
		F	205 ²⁵ 205	Double

Measurements in millimetres ID - inner diameter / OD - outer diameter

HZG-30B - FQG-B20140A kit to be provided to combine 4 modules

Model	Pipes	ID	Branch	Gas Side Adapters Recovery/Return included in the kit
HZG-30B	Gas Side	С	355°-5 355°-5 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1 428.58*1.1	0028.58*1.1
	Joint	D	382-5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Double
	Liquid Side	E	235 ¹ / ₂ 86 47 415, 88e1 90 190 190 190 190 190 190 19	의 영화 이 인 인 민 선 선 연 연 연 연 연 연 연 연 연 연 연 연 연 연 연 연 연
	Joint	F	205 ² 305 305 305 305 305 305 305 305	Double

Model	Gas Side Joint	Liquid Side Joint	Gas Side Adapters included in the kit	Adapters included in the kit
FQG-B2040A	485 9 44,5e1,5 9 100 150 150 150 150 150 150 150	270 270 41.3*41.3*38.1 44.5*1.5 77 78 78 78 78 78 78 78 78 7	95 444.5*1.5 1150 444.5*1.5	<u>*12.7*0.8</u> 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

SOLDER JOINTS TO CREATE COOLING CIRCUITS

Joints to combine outdoor units with 3 heat recovery tubes

HZG-R20B - kit to be provided to combine 2 modules

HZG-R30B - kit to be provided to combine 3 modules

Model	Pipes	ID	Branch
	Gas Side Joint Recovery/ Return	D	*496-5. *496-6. *496-6. *496-6. *496-6. *496-6. *496-6. *496-6. *496-6. *496-6. *496-6. *49
		E	#564-5 #564-5
	Gas High Pressure Side Joint	F	*440 ⁻⁵⁵ . **440 ⁻⁵⁵ . **440 ⁻⁵⁵ . **3 35 35 38
HZG-R30B		G	*530 ⁻⁵ / ₅ *530 ⁻⁵ / ₅ *50 ⁻⁶ / ₅ *50
	Joint side Liquid	Н	*301 ⁺⁵ 5. *301 ⁺⁵ 5. 10 ² 12 13 13 13 13 13 13 13 14 15 16 17 17 17 18 18 19 19 10 10 10 10 10 10 10 10
		I	*329 ⁺⁵ . *329 ⁺⁵ . *329 ⁺⁵ . 1010

Joints to combine outdoor units with 3 heat recovery tubes

Measurements in millimetres ID - inner diameter / OD - outer diameter

HZG-R40B - kit to be provided to combine 4 modules

HZG-R40B – kit to be provided to combine 4 modules

Model	Pipes	ID	Branch	Gas Side Adapters Recovery/Return included in the kit
		P	*301 ⁺⁵ 5. *301 ⁺⁵ 5. 110 ⁻² *301 ⁺⁵ 5. 110 ⁻² *301 ⁻⁴ 5. 1101. 1102. 1103. 1103. 1104. 1105.	
HZG-R40B	Joint side Liquid	Q	*329-5. *329-6. *32	
		R	*564 ¹⁵ 208 ¹² 81 ² 8	

CHILLER

Modular multi-scroll reversible heat pump systems

Reversible heat pump systems with Inverter and multi-scroll technology

Haier

The first factory completely interconnected to the outside world

In October 2016, Haier inaugurated the new Chiller factory. 10 types of Chillers are produced in this plant, with powers ranging from 30 to 7034KW. Centrifugal magnetic and screw compressors are the flagship of this production plant. Customers can control the entire production process, tests and inspections of their Chiller by comfortably sitting in an armchair with the use of a smartphone from anywhere in the world through a specific application. Haier has set a new production and control standard with this new factory. The test laboratory, the largest ever built for testable power, is AHRI certified. The most complicated and important production processes are entrusted to robots for accuracy, while other computers monitor and store data continuously throughout the assembly phase.

The factory extends over a surface area of 87,000 m² with 51,000 m² dedicated

10 different types of units that can be produced at the same time

modular areas

4,500 tons of maximum daily and testable total production compared to other factories of equal saves over 20% energy

Haier

Redefine production standards, carrying out new ideas and guidelines for the factories of the future

The first factory interconnected to the outside world.

Customers can interact with the factory, personalising their requests through a flexible material supply platform and production styles.

All processes are visible from the outside

All production, control and shipping processes are visible through tablets or smartphones from anywhere in the world, giving continuity and real-time updates on the progress of the works.

Internal and external interconnection is also an Eco-sustainability factor.

Thanks to the interaction between customer and factory, production times, supplies, stocks, transport and logistics are reduced, positively influencing the environmental impact due to certain processes.

CHILLER

Modular CA Series

Reversible heat pump with scroll compressors

DESIGN

High efficiency

1 Compressors

High-efficiency motors, coupled with new fan designs tested in wind tunnels, ensures minimal noise from the movement of large volumes of air.

2 Air Exchanger

4 Electronic Expansion Valve

Haier's modular series uses only electronic valves to control the refrigerant flow. Unlike other types of electromechanical control, the electronic control defines more precisely the pressure and volume of gas to be entered into the exchangers according to the required load which increases efficiency.

Haier uses high-efficiency components which enables us to achieve very high EERs.

Simplified installation

Compact design

The new configuration of these Chillers allows a reduction of the installation spaces by 25% compared to the classic configurations.

Flow Sensor

Many protections are standard such as the important water side "flow sensor" that controls the correct water flow in the circuit, preventing ruptures often caused by inadequate flow.

Extended applications

Reliability

Gas-Water Exchanger pipe bundle

Sizes 70-100-130 use shell and pipe heat exchangers with opposite flows.

These exchangers prevent the accumulation of dirt, ensuring exchange efficiency over time.

Dryer filter

A special filter absorbs any traces of water in the gas circuit, preventing stops due to "ice formation".

Pressure sensors

A series of sensors allows pressures and temperatures to be controlled in real time by changing the operation of the system to ensure stable and accurate performance.

3-Phase fan motors

Compared to single-phase motors, these fans provide a reduced electrical absorption at the start, higher rotational speed and stability.

Reliability

Security and protection

The modular chillers of Haier are equipped with a set of safety sensors to prevent: phase reversals on power supply, high or low pressure on gas side, formation of ice in the exchangers, overheating of components, exceeding standard absorptions and many more.

Comfort

Accurate water temperature control

By using the Electronic Expansion Valve combined with a Proportional Integral Derivative (PID) control technology, it is possible to ensure a maximum output temperature deviation of ±0,5°C from the set value.

Water-side illustrative diagram of terminals

Model

CA0130EAND

	Capacity	kW	30	65	98	130	
Cooling	Absorbed power	kW	9.4	19.2	28.9	38.4	
	Absorbed current	Α	15.8	34.6	53.2	75.4	
	Capacity	kW	33	70	103	135	
Heating	Absorbed power	kW	9.6	19.1	28.7	38.2	
	Absorbed current	Α	16.2	34.4	52.8	75	
EER (1)		W/W	3.19	3.39	3.39	3.39	
COP (2)		W/W	3.44	3.66	3.59	3.53	
COP (3) for deductions		W/W	non-deductible	4.07	3.98	3.92	
SEER		W/W	3.75	4.05	4.53	4.61	
Maximum absorbed power		kW	16.3	28	45.6	56	
Maximum absorbed current		Α	27.5	55	82.5	110	
Power supply		V		3N/380V/50Hz (L1+L2+L3+N+G)		
Refrigerant flow control				EEV electr	ronic valve		
Capacity control			100%	50%, 100%	33%, 67%, 100%	25%, 50%, 75%, 100%	
Protections and security				w refrigerant pressure, v			
			1	overheating components	s, phase loss and reversa	al	
	Туре				-scroll at fixed speed		
Compressor	Amount		1	2	3	4	
	Absorbed power	kW	9	18	27	36	
Refrigerant	Туре			R41	10A		
	Amount	Kg	5.5	6x2	5.8x3	5.8x4	
	Туре		Corrugated copper pipe coupled with water-repellent aluminium				
Air side exchanger	Fan motor power	kW	0.7 1.5 2.3			3	
· ··· • · • · • · · · · · · · · · · · ·	Fan Type		Axial				
	Fan quantity		1	1 2 3		4	
	Туре		Plates		Pipe beam		
	Nominal water flow	m³/h	5.6	12	17.7	24	
Gas-water exchanger	Pipe diameter input/output		DN65	R 2" (external thread)	R 2" (external thread)	R2 1/2" (external thread)	
	Water cleaning coefficient	m².°C/KW	0.018	0.018	0.018	0.018	
	Std. working pressure	Мра	1.0	1.0	1.0	1.0	
	Indoor pressure drop	Кра	40	45	50	60	
	Distance 1 m	dB(A)	60	65	67	68	
Sound pressure @	Distance 5m	dB(A)	56	60	62	63	
	Distance 10m	dB(A)	48	54	56	57	
	Width	mm	918	2060	2060	2060	
Unit dimensions	Depth	mm	1038	780	1603	1603	
	Height	mm	1810	2170	2170	2170	
	Width	mm	1075	2200	2200	2200	
Packaging dimensions			940	830	1650	1650	
	Depth	mm	5.0				
	Depth Height	mm	1950	2280	2280	2280	
Unit weight	·			2280 630	2280 960	2280 1090	
Unit weight	Height	mm	1950				
Unit weight	Height Net	mm Kg	1950 270	630	960	1090	
Outdoor Temperature	Height Net Gross packed	mm Kg Kg	1950 270 290	630 645 670	960 990	1090 1125	
·	Height Net Gross packed Running order	mm Kg Kg Kg	1950 270 290	630 645 670	960 990 1010	1090 1125	

CA0035EAND

CA0070EAND

CA0100EAND

- The values indicated were obtained under following test conditions:

 (1) Cooling: water input /output temperature of 12°/7°C with an outdoor temperature of 35°C BS

 (2) Heating: water input/output temperature of 40°/45°C with an outdoor temperature of 7°C BS / 6°C BU

 (3) Heating: water input/output temperature of 30°/35°C with an outdoor temperature of 7°C BS / 6°C BU

 Water side error factor: 0.086M2°C/KW

- @sound pressure measured in open field

CA0035EAND Water input DN65 795 Water output DN65 695 1038 918 CA0070EAND 2170 725 Fixing holes

Minimum installation spaces

CHILLER Modular Performance Table & Correction Coefficient

CAUU35EAND									
Cooling capacity									
Output temperature			Outdoor air temperature (C)						
Water (C)	25	30	35	40	45				
5	1.03	0.97	0.94	0.90	0.85				
7	1.07	1.03	1.00	0.95	0.88				
9	1.10	1.06	1.03	0.98	0.91				
11	1.12	1.10	1.08	1.02	0.97				
13	1.19	1.20	1.15	1.10	1.05				
15	1.31	1.31	1.26	1.20	1.15				

Heating capacity									
Output temperature		Outdoor air temperature (C)							
Water (C)	15	10	7	5	0	-5	-10	-15	
30	1.23	1.15	1.11	1.06	0.87	0.80	0.71	0.6208	
35	1.13	1.10	1.08	0.83	0.74	0.68	0.58	0.57	
40	1.13	1.09	1.05	0.83	0.74	0.66	0.57	0.55	
45	1.13	1.09	1.00	0.83	0.74	0.64	0.57	0.53	
50	1.13	1.07	0.92	0.81	0.74	0.64	0.56	0.51	
55	1.12	1.06	0.92	0.81	0.72	0.62	-	-	

Notes:

- 1. Real capacity = Nominal capacity ${\bf x}$ the correction coefficient.
- $2. \ \ The \ correction \ coefficient \ is \ an \ average \ value. \ See \ the \ technical \ manual \ for \ more \ details$

CA0070EAND - CA01000EAND - CA0130EAND

Cooling capacity								
Output temperature		Outdoor air temperature (C)						
Water (C)	25	30	35	40	45			
5	1.07	1.00	0.94	0.94	0.81			
7	1.14	1.07	1.00	0.96	0.86			
9	1.20	1.13	1.06	0.98	0.91			
11	1.27	1.19	1.12	1.04	0.96			
13	1.34	1.26	1.17	1.09	1.01			
15	1.41	1.32	1.23	1.14	1.06			

Heating capacity										
Output temperature		Outdoor air temperature (C)								
Water (C)	15	10	7	5	0	-5	-10	-15		
30	1.26	1.16	1.12	1.07	0.88	0.82	0.72	0.69		
35	1.24	1.15	1.11	1.06	0.88	0.81	0.71	0.69		
40	1.22	1.14	1.10	1.05	0.87	0.80	0.71	0.67		
45	1.19	1.12	1.00	0.98	0.85	0.79	0.70	0.66		
50	1.19	1.11	0.98	0.97	0.84	0.78	0.67	0.65		
55	1.14	1.07	0.97	0.94	0.83	0.77	-	-		

Notes:

- 1. Real capacity = Nominal capacity ${\bf x}$ the correction coefficient.
- $2. \ \ The \ correction \ coefficient \ is \ an \ average \ value. \ See \ the \ technical \ manual \ for \ more \ details$

Illustrative diagram of assembly

Group control

You can connect up to 16 modules on a single hydraulic circuit, which can be controlled by a single controller.

HYDRONIC KIT HACI-M / HACI-MA

HACI-M Units with pumps and accessories

HACI-MA Units with pump, tank and accessories

INTRODUCTION

The HACI-M and HACI-MA units have been specifically designed to optimise the performance of air conditioning and cooling systems and to reduce installation time.

The units comprise of an integrated system, complete with all the components necessary for efficient operation of the hydraulic circuit (or for the distribution of cooled water).

They are designed, pre-assembled and every single unit is tested in the factory. This ensures higher quality in the execution of the plants and a simpler and faster installation. The kits are available with a wide range of pump/storage tank combinations that are functional to any type of cooling or heat pump system.

The units are made of materials and finishes designed for outdoor installations.

PLUS

- Easy installation
- Tests carried out on 100% of the units produced
- Pre-mounted system
- · Quick installation
- · Correct unit sizing
- Reduced energy consumption

The units comply with European Union directives and are marked with CE marking.

Compliance with the ErP directive on energy efficiency.

Pre-assembled and proven accessories for quick and secure installation.

HACI-MA vertical

AVAILABLE VERSIONS

The wide choice of pump-storage tank combinations allows you to meet every need for plant design.

There are many versions available with single or double pump together with storage tanks of 100, 200, 300 litres for single chiller combinations (for multi-chiller combinations, ask Haier A/C technical office).

HACI-MA units are hydraulic power stations with inertial storage tank designed to reduce the time it takes for air conditioning and refrigeration systems to be set up, and can be combined with all types of water coolers.

The HACI-MA unit consists of:

- · Carbon steel tank and pipes insulated with anticondensation elastomer.
- Single or double centrifugal pump with shut-off valves
- Electric power panel with pump alternating device at each start (version with 2 pumps), starting pump in case of pump failure (version with 2 pumps), magneto-thermic protections, clean contacts for remote signalling of running pumps, IP55 protection degree.
- Expansion tank.
- Safety valve.
- Deaerator.
- Pressure gauge.
- Loading/drain valves.
- Base made of galvanised and painted steel sheet
- Self-supporting panel in galvanised carbon steel sheet and painted accordingly for outdoor installation.

Recommended for Haier Chiller	Haier Code	Description
	M-A35_1P0,4_100	HYDRONIC MODULE WITH 100 LT INERTIAL STORAGE TANK. SINGLE PUMP with low prevalence from 5.7 m³/h - 15 mCA
C40075	M-A35_1P0,6_100	HYDRONIC MODULE WITH 100 LT INERTIAL STORAGE TANK. SINGLE PUMP with high prevalence from 5.7 m³/h - 25 mCA
CA0035	M-A35_2P0,4_100	HYDRONIC MODULE WITH 100 LT INERTIAL STORAGE TANK. DOUBLE PUMP with low prevalence from 5.7 m ³ /h - 15 mCA
	M-A35_2P0,6_100	$HYDRONIC\ MODULE\ WITH\ 100\ LT\ INERTIAL\ STORAGE\ TANK.\ DOUBLE\ PUMP\ with\ high\ prevalence\ from\ 5.7\ m^3/h-25\ mCA$
	M-A70_1P1_200	$ HYDRONIC\ MODULE\ WITH\ 200\ LT\ INERTIAL\ STORAGE\ TANK.\ SINGLE\ PUMP\ with\ low\ prevalence\ from\ 12\ m^3/h-15\ mCA $
CA0070	M-A70_1P2_200	HYDRONIC MODULE WITH 200 LT INERTIAL STORAGE TANK. SINGLE PUMP with high prevalence from 12 m³/h - 19 mCA
CA0070	M-A70_2P1_200	HYDRONIC MODULE WITH 200 LT INERTIAL STORAGE TANK. DOUBLE PUMP with low prevalence from 12 m³/h - 15 mCA
	M-A70_2P2_200	$ eq:hydronic module with 200 LT INERTIAL STORAGE TANK. DOUBLE PUMP with high prevalence from 12~m^3/h - 19~mCA \\$
	M-A100_1P3_300	$ HYDRONIC\ MODULE\ WITH\ 300\ LT\ INERTIAL\ STORAGE\ TANK.\ SINGLE\ PUMP\ with\ low\ prevalence\ from\ 17.2\ m^3/h-14\ mCA $
CA0100	M-A100_1P5_300	$HYDRONIC\ MODULE\ WITH\ 300\ LT\ INERTIAL\ STORAGE\ TANK.\ SINGLE\ PUMP\ with\ high\ prevalence\ from\ 17.2\ m^3/h-22\ mCA$
CAUIUU	M-A100_2P3_300	HYDRONIC MODULE WITH 300 LT INERTIAL STORAGE TANK. DOUBLE PUMP with low prevalence from 17.2 m³/h - 14 mCA
	M-A100_2P5_300	$HYDRONIC\ MODULE\ WITH\ 300\ LT\ INERTIAL\ STORAGE\ TANK.\ DOUBLE\ PUMP\ with\ high\ prevalence\ from\ 17.2\ m^3/h\ -\ 22\ mCA$
	M-A130_1P3_300	HYDRONIC MODULE WITH 300 LT INERTIAL STORAGE TANK. SINGLE PUMP with low prevalence from 23.2 m3/h - 11 mCA
CA0130	M-A130_1P5_300	$ HYDRONIC\ MODULE\ WITH\ 300\ LT\ INERTIAL\ STORAGE\ TANK.\ SINGLE\ PUMP\ with\ high\ prevalence\ from\ 23.2\ m^3/h-19\ mCA$
CAUISU	M-A130_2P3_300	HYDRONIC MODULE WITH 300 LT INERTIAL STORAGE TANK. DOUBLE PUMP with low prevalence from 23.2 m³/h - 11 mCA
	M-A130_2P5_300	HYDRONIC MODULE WITH 300 LT INERTIAL STORAGE TANK. DOUBLE PUMP with high prevalence from 23.2 m³/h - 19 mCA

Features Layout 1:

Hydronic kit, Chiller and plant connected in series, which provides constant water flow throughout the plant.

NOTE: Entire HACI-MA kit is in Layout 1

Legend

- 1. Storage tank
- 2. Y-filter (optional, supplied not assembled)
- 3. Pressure gauge
- 4. Deaerator
- 5. Safety valve
- 6. Expansion tank
- 7. On-off valve
- 8. Circulator
- 9. Check valve (only for 2-pump version).
- 10. Automatic filling group
- 11. Differential pressure switch (optional).
- 12. Suitable self-supporting woodwork for outdoor housing
- 13. Chiller
- 14 Plant

Components

- Tank
- Circulator
- 3 Expansion tank
- 4 On-off valve
- 5 Automatic ventilation system
- 6 Air vent valve
- 8 Automatic filling group
- 9 Electrical panel
- 10 Check valve (version with 2 pumps only)
- 11 Drain
- 12 Electrical grid input
- 13 Lifting points
- 14 Delivery to the plant
- 15 Return from the plant

HYDRONIC SYSTEMS Layout 1: Dimensions & Connections

ertical HACI-MA dimensions								
Capacity	Α	В	Н	С	D	E	IN/OUT	
L	mm	mm	mm	mm	mm	mm	Inch	
100	1120	800	1350	546	1002	100	1" 1/2	
200	1120	800	1350	546	1072	80	1" ½	
300	1100	760	1726	558	1008	60	2" 1/2	

	HACI-MA	1 p	oump	2 pumps	(1 reserve)				
	Capacity	Model	Weight (kg)	Model	Weight (kg)	Power supply	F.L.I (kW)	F.L.I (A)	Ve (I)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		P0.4	159	P0.4	195		0.72	1.3	18
	100 vertical	P0.6	159	P0.6	195	380V three-phase (5 wires L1+L2+L3+N+G)	0.97	1.6	18
HACI-MA	200 vertical	P1	195	P1	211		1.1	2.5	18
		P2	195	P2	211		1.5	3,2	18
		Р3	188	Р3	220		1.5	3.4	25
	300 vertical		194	P5	231		3	5.6	25

F.L.I. Maximum absorbed power F.L.A. Maximum absorbed current Ve Expansion tank capacity

HYDRONIC SYSTEMS HACI-MA Weight Distribution

	Pump model	Storage tank	1 pump				2 pumps (1 reserve)			
		capacity (I)	W1 (kg)	W2 (kg)	W3 (kg)	W4 (kg)	W1 (kg)	W2 (kg)	W3 (kg)	W4 (kg)
W1 W3	P0.4	100	29	67	50	115	33	76	56	131
	P0.6	100	29	67	50	115	33	76	57	131
	P1	200	44	101	75	176	46	106	78	183
W2 W4	P2	200	44	102	76	175	46	106	79	182
Unit top view	Р3	300	177	91	146	77	130	130	130	130
	P5	300	179	92	149	76	134	134	132	132

Maximum water content in the plant and expansion tank sizing

The table shows the maximum amount of water contained in the hydraulic plant, compatible with the capacity of the expansion tank provided as standard on all HACI-MA models and with the activation value of the safety valve (3 bars for all models). If the actual water content of the plant, including the storage tank, is higher than that of the operating conditions shown in the table, additional expansion tanks must be installed.

Model	Hydraulic Height H	М	М
Model	Pre-loading the expansion tank	1.80 bar	1.50 bar
HACI-MA	Maximum water capacity of the circuit in litres (1)	708	885
100	Maximum water capacity of the circuit in litres (2)	453	567
HACI-MA	Maximum water capacity of the circuit in litres (1)	708	885
200	Maximum water capacity of the circuit in litres (2)	453	567
HACI-MA	Maximum water capacity of the circuit in litres (1)	984	1230
300	Maximum water capacity of the circuit in litres (2)	630	788

Operating conditions:

- Cooling: Minimum fluid temperature = 4 °C Maximum fluid temperature = 40 °C
- (2) Heating (heat pump):

 Minimum fluid temperature = 4 °C

 Maximum fluid temperature = 50 °C

HYDRONIC SYSTEMS HACI-MA Pre-load of the Expansion Tank

The expansion tank of all models is pre-loaded with a standard value of 1.5 bars.

However, it is necessary to adjust this value according to the H-height of the plant.

The formula for calculating the preload value of the expansion tank is as follows:

P = (H/10.2)+0.3

Legend

H Plant height in meters

P: Pre-load of the expansion tank expressed in bars

If the result of the pre-load value is less than the standard value, no action is required. This means that for each installation with H less than 12.25 m, the pre-load of the expansion tank must be 1.5 bars. In this case, the operator must check the pressure value without making any intervention.

Suppose an H-height value of 15.3 m.

The pre-load value will be:

P = (15.3/10.2) + 0.3 = 1.8 bar

H: plant height

HMAX: maximum plant height

HI: The height below which the pre-load of the expansion tank is equal to the standard

- * Check that the lowest point of the plant can support the pressure of the plant.
- ** Check that the highest point of the plant is not at a height greater than H max= 27 m.

Water temperature							
Glycol-water mixture	Max	Min	Correction factor	Reference value			
10%	40	-2	0.507	(1)			
10%	5	-2	0.686	(2)			
20%	40	-4	0.434	(1)			
20%	50	-4	0.604	(2)			
30%	40	-6	0.393	(1)			
30%	50	-6	0.555	(2)			

Operating conditions:

(1) Cooling:

Minimum fluid temperature = 4 °C Maximum fluid temperature = 40 °C

(2) Heating (heat pump):

Minimum fluid temperature = 4 °C

Maximum fluid temperature = 50 °C

Normal conditions of use

The HACI-MA hydronic group is designed to be inserted into air conditioning systems, normally coupled with a Chiller or heat pump.

The groups are designed to work with water or mixtures of water and ethylene glycol in a maximum percentage of 30% To operate with higher glycol percentages or with different fluids you need to consult the Haier technical team.

The minimum operating temperature of the fluid is -10° C, obviously with a mixture of water and glycol, while the maximum is 60° C. Special implementations for operation with lower or higher temperature fluids are available on request.

The operating outdoor air temperature range is -20°C +40 °C. Again, special versions are available for operation outside the standard range.

The maximum operating pressure of the group is 3 bars. Versions with higher maximum operating pressures are available on request.

HACI-M

(TESTED)

Pipes insulated with anti-condensation elastomer

INTRODUCTION

HACI-M units are hydraulic stations designed to speed up and reduce the time it takes to set up air conditioning and cooling systems.

They can be combined with any type of water cooler.

The HACI-M unit includes:

- Pipes insulated with anti-condensation elastomer
- Single or double centrifugal pump with shut-off valves
- Electric power panel with pump alternating device at each start (version with 2 pumps), starting pump in case of pump failure (version with 2 pumps), magneto-thermic protections, contacts for remote signalling of running pumps, IP55 protection degree.
- Safety valve.
- Deaerator.
- Pressure gauge.
- Filling/draining valves.
- Base made of galvanised and painted steel sheet
- Aluminium plate self-supporting panel suitable for outdoor installations.
- Easily and quickly removable panels
- Easy and quick access to the electric panel

The wide range of combinations offers solutions for any type of plant.

Recommended for Haier Chiller	Haier Code	Description
	M-35_1P0,4	HYDRONIC MODULE SINGLE PUMP with low prevalence of 5.7 m³/h - 15 mCA
CA0035	M-35_1P0,6	HYDRONIC MODULE SINGLE PUMP with high prevalence of 5.7 m ³ /h - 25 mCA
CA0035	M-35_2P0,4	HYDRONIC MODULE DOUBLE PUMP with low prevalence of 5.7 m³/h - 15 mCA
	M-35_2P0.6	HYDRONIC MODULE DOUBLE PUMP with high prevalence of 5.7 m³/h - 25 mCA
	M-70_1P1	HYDRONIC MODULE SINGLE PUMP with low prevalence of 12 m³/h - 15 mCA
CA0070	M-70_1P2	HYDRONIC MODULE SINGLE PUMP with high prevalence of 12 m³/h - 19 mCA
CA0070	M-70_2P1	HYDRONIC MODULE DOUBLE PUMP with low prevalence of 12 m³/h - 15 mCA
	M-70_2P2	HYDRONIC MODULE DOUBLE PUMP with high prevalence of 12 m³/h - 19 mCA
	M-100_1P3	HYDRONIC MODULE SINGLE PUMP with low prevalence of 17.2 m³/h - 14 mCA
CA0100	M-100_1P5	HYDRONIC MODULE SINGLE PUMP with high prevalence of 17.2 m³/h - 22 mCA
CAUIOO	M-100_2P3	HYDRONIC MODULE DOUBLE PUMP with low prevalence of 17.2 m³/h - 14 mCA
	M-100_2P5	HYDRONIC MODULE DOUBLE PUMP with high prevalence of 17.2 m³/h - 22 mCA
	M-130_1P3	HYDRONIC MODULE SINGLE PUMP with low prevalence of 23.2 m³/h - 11 mCA
	M-130_1P5	HYDRONIC MODULE SINGLE PUMP with high prevalence of 23.2 m³/h - 19 mCA
CA0130	M-130_2P3	HYDRONIC MODULE DOUBLE PUMP with low prevalence of 23.2 m³/h - 11 mCA
	M-130_2P5	HYDRONIC MODULE DOUBLE PUMP with high prevalence of 23.2 m³/h - 19 mCA

Features:

Hydronic kit, Chiller and plant connected in series, which provides constant water flow throughout the plant.

NOTE: Entire HACI-M kit is in Layout 1

GRUPPO HACI-M

Legend

- 1. Circulator
- 2. Check valve (only for 2-pump version)
- 3. On-off valve
- 4. Deaerator
- 5. Automatic filling group
- 6. Expansion tank (optional)
- 7. Safety valve
- 8. Drain
- 9. Differential pressure switch (optional)
- 10. Fluid refilling input
- 11. Y-filter (optional), supplied unassembled
- 12. Chiller
- 13. Plant

Components

- Electrical panel
- Circulation pump (optional double pump version)
- Removable bolted panel
- Hinged panel that can be opened
- Shut-off valves
- Water output connection
- Water input connection
- Pressure transducer (only on inverter versions)
- Check valve (only on double pump versions)
- 10 Ventilation grill
- 11 Safety valve
- 12 Automatic filling group
- 13 Stand
- 14 Automatic air vent

HYDRONIC SYSTEMS HACI-M Layout 1: Dimensions & Connections

HYDRONIC SYSTEMS HACI-M Weights & Electrical Parameters

HACI-M	1 pump	2 pumps (1 reserve)	Electrical Pa	Electrical Parameters						
Pump model	Weight (kg)	Weight (kg)	Power supply	F.L.I (kW)	F.L.I (A)					
P0.6	100	114	380V three-phase (5 wires L1+L2+L3+N+G)	0.97	1.6					
PO.4	100	114		0.72	1.3					
P1	129	150		1.1	2.5					
P2	130	151		1.5	3,2					
Р3	131	153		1.5	3.4					
P5	137	163		3	5.6					

F.L.I. Maximum absorbed power

F.L.A. Maximum absorbed current

CHILLER **H4M Series**

Reversible & Modular Air/ Water Heat Pump

Reversible and modular air/water heat pump for the production of cold and hot water for air conditioning or ACS (Sanitary Hot Water) on a dedicated circuit.

Only 23 kW module in Cooling and 27 kW in Heating.

Possibility to connect up to 4 modules on a single cooling circuit.

GENERAL FEATURES

- Wide standard operating range, outdoor air: cooling from -10°C to + 45°C / heating from -20°C to +35°C
- Ideal for ACS production: +60°C
- COP 4.1*
- · Low sound level
- Evi technology
- Standard DC fan
- Possible modular combination of up to 4 cascading units
- Innovative Sliding Defrost
- · Air exchanger with hydrophilic treatment

The H4M unit is designed for use in residential and tertiary utilities, both newly built and undergoing renovation. The unique 3-way valve kit, pre-assembled on demand, transforms the machine from 2 to 4 tubes, to produce ACS on a dedicated circuit. ACS production does not take place with the recovery method, but with the priority system. With an ACS request the machine stops the production of water for air conditioning and diverts all the power on the other circuit to produce ACS. Once the ACS demand is satisfied, the machine starts air conditioning on the dedicated circuit.

Use E.V.I. technology (Enhanced Vapor Injection) which allows to significantly extend the operating limits of the equipment.

In "Heating" mode, the unit is sized to operate with very rigid outdoor air temperatures (down to -20 °C) and to heat the water to high temperature levels (max 60 °C).

The high operating range makes H4M the ideal solution for both low temperature (e.g. radiant panels) and high temperature (e.g. radiators) plants present in new or redeveloped buildings.

Using the available KITs it is possible to produce sanitary hot water both during winter and summer, thus avoiding the installation of additional heat sources. The production of the ACS takes place on a dedicated output, so the machine is presented with 4 pipes. 2 for air conditioning and 2 for ACS. Demand for ACS from utilities, has priority over the production of air conditioning. The advantage is that 2 circuits which in most cases are independent and autonomous in the air conditioning systems and ACS are powered with a single machine.

H4M units were developed with "modular logic" to meet a wide range of thermal and refrigerated performance.

It is possible to pair multiple basic modules (max 4) and expand the application potential accordingly. The modules are designed to be easily installed and interconnected during user through the appropriate kits supplied. The modular logic makes it easy to increase the power of the plant after the first installation.

The electronic control system intelligently coordinates the different units to ensure continuity of operation and maintain high efficiency. By connecting 2 or more modules, the controller can define which and how many units to dedicate to ACS production when required.

MOD	EL		1 x H4M 081A
A35	Cooling potential	kW	23.02
A35 / W7	Total absorbed power ****	kW	7.87
	COP (EN 14511-2013) *	-	3.03
A35	Cooling potential	kW	30.73
A35/W18	Total absorbed power ****	kW	8.22
18	COP (EN 14511-2013) *	-	3.85
A7 ,	Thermal potential	kW	26.93
A7 / W35	Total absorbed power ****	kW	6.83
- 01	COP (EN 14511-2013) *	-	4.12
A7 ,	Thermal potential	kW	27.20
A7 / W45	Total absorbed power ****	kW	8.43
- 01	COP (EN 14511-2013) *	-	3.34
A2 /	Thermal potential	kW	24.14
A2 / W35	Total absorbed power ****	kW	6.79
01	COP (EN 14511-2013) *	-	3.72
A2,	Thermal potential	kW	24.63
A2 / W45	Total absorbed power ****	kW	8.41
5	COP (EN 14511-2013) *	-	3.04

Note: A - outdoor air temperature in °C / W = water output temperature in °C

SCOP	-	3.29
ESEER**	-	3.54
Energy Class Regulation of (EU) 811/2013	-	A+
Maximum current	А	19.5
Maximum starting current	А	104.33
Scroll compressors	No.	1
Cooling circuits	No.	1
Partitioning steps	No.	1
Power supply voltage	V/Ph/Hz	400/3P+N/50 (5 wires L1+L2+L3+N+T)
Sound power Lw ***	dB(A)	69.8
Sound pressure Lp ***	dB(A)	38.1
PLANT SIDE EXCHANGER		
Type of fluid	-	Water
Plate exchanger	No.	A+
Water flow	l/s	1.10
Pressure drop	Кра	9.21
VENTILATING SECTION		
Axial fan	No.	1
Total air flow	m³/s	4.44
Rotation speed	min ⁻¹	687
Unit-absorbed power	kW	0.61
Unit-absorbed current	А	1.00
DIMENSIONS AND WEIGHTS (without accessor	ies)	
Width	mm	1185
Width	mm	1300
Height	mm	2306
Empty weight	Kg	520
HYDRAULIC PART		
Plant side pump	No.	1
Useful external prevalence	Кра	83.4
Useful external prevalence (K3V on the machine)	Кра	79.8
Absorbed power	kW	0.35
Absorbed current	А	1.33
Plant side expansion tank	L	10
Maximum plant side pressure	Кра	300

Ratio between output power and absorbed power according to EN 14511.

Cooled water temperature: Constant at 7°C.

^{***} Sound power, Sound pressure at 10 meters in open field (ref. ISO 3744).

^{****} Absorbed power with pump included

A7/W35 Outdoor air temperature: 7°C - Plant fluid temperature (water): $30/35^{\circ}\text{C}$ A7/W45 Outdoor air temperature: 7°C - Plant fluid temperature (water): $40/45^{\circ}\text{C}$ A2/W35 Outdoor air temperature: 2°C - Plant fluid temperature (water): $30/35^{\circ}\text{C}$ A2/W45 Outdoor air temperature: 2°C - Plant fluid temperature (water): $40/45^{\circ}\text{C}$ A35/W7 Outdoor air temperature: 35°C - Plant fluid temperature (water): $12/7^{\circ}\text{C}$

A35/W18 Outdoor air temperature: 35°C - Plant fluid temperature (water): 23/18 °C

MOE	DEL		2 x H4M 081A	3 x H4M 081A	4 x H4M 081A
A35	Cooling potential	kW	46.04	69.06	92.08
A35 / W7	Total absorbed power ****	kW	15.74	23.61	31.48
7	COP (EN 14511-2013) *	-	3.03	3.03	3.03
A35	Cooling potential	kW	61.46	92.19	122.92
A35/W18	Total absorbed power ****	kW	16.44	24.66	32.88
18	COP (EN 14511-2013) *	-	3.85	3.85	3.85
2	Thermal potential	kW	53.86	80.79	107.72
A7 / W35	Total absorbed power ****	kW	13.66	20.49	27.32
5	COP (EN 14511-2013) *	-	4.12	4.12	4.12
A7	Thermal potential	kW	54.40	81.60	108.80
A7 / W45	Total absorbed power ****	kW	16.86	25.29	33.72
G	COP (EN 14511-2013) *	-	3.34	3.34	3.34
₽2	Thermal potential	kW	48.28	72.42	96.56
A2 / W35	Total absorbed power ****	kW	13.58	20.37	27.16
G	COP (EN 14511-2013) *	-	3.72	3.72	3.72
₽	Thermal potential	kW	49.26	73.89	98.52
A2 / W45	Total absorbed power ****	kW	16.82	25.23	33.64
Ċı	COP (EN 14511-2013) *	-	3.04	3.04	3.04

Note: A - outdoor air temperature in °C / W = water output temperature in °C

Energy Class Regulation of (EU) 811/2013	-	A+	A+	A+
Maximum current	А	39.00	58.50	78.00
Maximum starting current	А	123.83	143.33	162.83
Scroll compressors	No.	2	3	4
Cooling circuits	No.	2	3	4
Partitioning steps	No.	2	3	4
Power supply voltage	V/Ph/Hz	400/3P+N/50 (5 wires L1+L2+L3+N+T)	400/3P+N/50 (5 wires L1+L2+L3+N+T)	400/3P+N/50 (5 wires L1+L2+L3+N+T)
Sound power Lw ***	dB(A)	72.8	74.6	75.8
Sound pressure Lp ***	dB(A)	41.0	42.5	43.6
PLANT SIDE EXCHANGER				
Type of fluid	-	Water	Water	Water
Plate exchanger	No.	2	3	4
Water flow	l/s	2.20	3.30	4.40
Pressure drop	Кра	9.21	9.21	9.21
VENTILATING SECTION				
Axial fan	No.	2	3	4
Total air flow	m³/s	8.89	13.33	17.78
Rotation speed	min ⁻¹	687.00	687.00	687.00
Unit-absorbed power	kW	0.61	0.61	0.61
Unit-absorbed current	Α	1.00	1.00	1.00
DIMENSIONS AND WEIGHTS (without accessor	ies)			
Width	mm	1185	1185	1185
Width	mm	2610	3920	5230
Height	mm	2306	2306	2306
Empty weight	Kg	1040	1560	1560
HYDRAULIC PART				
Plant side pump	No.	2	3	4
Useful external prevalence	Кра	83.4	83.4	83.4
Useful external prevalence (K3V on the machine)	Кра	79.8	79.8	79.8
Absorbed power	kW	0.7	1.05	1.4
Absorbed current	А	2.66	3.99	5.32
Plant side expansion tank	L	20	30	40
Maximum plant side pressure	Кра	300	300	300

Ratio between output power and absorbed power according to EN 14511.

Cooled water temperature: Constant at 7°C.

Sound power, Sound pressure at 10 meters in open field (ref. ISO 3744).

^{****} Absorbed power with pump included

A7/W35 Outdoor air temperature: 7° C - Plant fluid temperature (water): $30/35^{\circ}$ C A7/W45 Outdoor air temperature: 7° C - Plant fluid temperature (water): $40/45^{\circ}$ C A2/W35 Outdoor air temperature: 2° C - Plant fluid temperature (water): $30/35^{\circ}$ C A2/W45 Outdoor air temperature: 2° C - Plant fluid temperature (water): $40/45^{\circ}$ C A35/W7 Outdoor air temperature: 35° C - Plant fluid temperature (water): $12/7^{\circ}$ C

A35/W18 Outdoor air temperature: 35°C - Plant fluid temperature (water): 23/18 °C

K3V ACCESSORY: THREE-WAY VALVE KIT

The three-way valve kit - K3V, allows you to use the H4M 081A heat pump for heating sanitary water as well as for the hot / cold water demand of the air conditioning system.

The K3V three-way valve kit exists in both the on-board and remote versions.

In the first case (K3V on the machine) the unit is equipped with 4 hydraulic connections to power the air conditioning plant and the heating exchanger of the ACS storage tank.

In the second case (remote K3V) the unit is equipped with only 2 hydraulic connections: the installer will be responsible for assembling the three-way valve supplied with the system.

In both cases, the regulating device automatically manages the commutation of the three-way valve in order to guarantee the priority of ACS production in both the "Heating and Cooling" functions.

(2 pipes per climate circuit and 2 for ACS production)

INDICATIVE DIAGRAM WITH 3-WAY VALVE ON BOARD AND 4-TUBE OUTPUT

- A Terminal circuit, radiant, fan coil for air conditioning
- **B ACS Production Circuit**

LEGEND

- 1- Plant delivery/return pipes
- 2- ACS delivery/return pipes3- "VICTAULIC" connection
- 4- Antivibration
- 5-Tap
- 6-Y Filter
- 7- Separator
- 8-Expansion tank
- 9-Safety valve
- 10-Tap

- 11- Water drain
- 12- ACS storage tank
- 13- Outdoor air temperature probe
- 14- Storage tank water temperature
- 15 Secondary pump

- C System diagram with remote 3-way valve
- D 3-way valve for ACS controlled by the H4M module

LEGEND

- 1- Plant delivery/return pipes
- 2- ACS delivery/return pipes
- 3- "VICTAULIC" connection
- 4- Antivibration
- 5- Tap
- 6-YFilter
- 7-Separator
- 8-Expansion tank
- 9- Safety valve
- 10- Tap
- 11- Water drain

- ,12- ACS storage tank
- 13- Outdoor air temperature probe
- 14- Storage tank water temperature
- 15- Secondary pump

MODULAR OPERATION

Up to $4\,\mathrm{H4M}$ modules can be coupled with the $081\mathrm{A}$ kit, with a design prepared to minimise the required space and therefore the overall dimensions of the units.

The coupling kits facilitate their positioning and interconnection.

ACCESSORIES

The standard basic module includes a hydronic kit complete with high efficiency electronic circuitry, expansion tank, safety valve and protection device against lack of flow, all assembled on board and ready for connection to the user plant.

The following accessories allow you to choose the most suitable type of operation according to the different plant requirements:

ACCESSOR	IES INSTALLED ON THE MACHINE
3-way ACS valve kit on board H4M	H4M evaporator anti-freeze heater kit, pipes with ACS
H4M coil with pre-varnished fin	H4M tray defrosting resistance kit
H4M coil with Electro-fin® treatment	H4M fan kit and resistance electric panel
Refrigerant pressure gauges	H4M RS485 Modbus Serial Card **
H4M evaporator anti-freeze resistance kit and pipes	H4M Soft start compressor

ACCESSORIES PRO	VIDED SEPARATELY
H4M unit mechanical coupling kit	Water network filter kit, 2"
H4M unit hydraulic coupling kit	Water network filter kit, 2" 1/2
Hydraulic unit coupling kit + heating cable	ACS remote 3-way valve kit, 1 "1/4
Base bracket kit for 2 H4M units	ACS remote 3-way valve kit, 2"
Base bracket kit for 3 H4M units	Multi-step control kit ***
Base bracket kit for 4 H4M units	H4M remote control kit
Kit 4 rubber anti-vibration mounts	

^{**} One card for each H4M unit, required for multi-step cascade systems. A control kit for managing a multi-step system consisting of 2, 3 or 4 H4M units.

CHILLER **HZN & HZN PLUS Series**

Reversible Air Cooled Heat Pump

Reversible air-cooled heat pump

HZN series

GENERAL FEATURES

- High-efficiency heat pump with 40 to 220 kW potential
- · Multi-scroll unit with refrigerant R410A
- Standard unit operating range, outdoor air: cooling from -15°C to + 45°C / heating from -10°C to +20°C
- Unit operating range with mounted accessories, outdoor air: cooling from -7°C to + 45°C / heating from -10°C to +35°C
- High efficiency at partial loads
- · Optional internal hydronic kit
- · Low sound level
- STD or SUPER-SILENT (SLN) version available
- Standard RS485 card
- Wide range of optional accessories
- · Robust and well-defined woodwork

The HZN is a reversible air-cooled heat pump for outdoor and scroll compressors, available in an extensive range of multi-compressor models with potential from 40 to 220 kW. All units use R410A refrigerant, and are sized to achieve excellent energy efficiencies, particularly high in partial load operation.

HZN can be used in any plant setting, thanks to the compactness and the presence of an extensive range of equipment

Thanks to the construction solutions adopted, the installation and maintenance activities are particularly facilitated, saving the experts time and money.

The units are assembled on a self-supporting galvanized sheet structure complete with removable panelling, all painted with oven-dried polyester powders of RAL 9018 colour after having undergone phosphating, washing and drying cycles.

ACCESSORIE:	S AVAILABLE ON DEMAND
1 pump	Compressor casing resistance (INCLUDED)
1 HP pump	Compressor magneto thermic protections
2 pumps	Rubber anti-vibration mounts
2 HP pumps	Coil protection network
1 pump + storage tank in series	Compressor soft starter kit
1 HP pump + storage tank in series	Coil with pre-varnished fin
2 pumps + storage tank in series	Auto power factor correction kit cos φ 0,95)
2 HP pumps + storage tank in series	Fan Kit / Res. Electric Q.E.
Partial heat recovery (desuperheater)	Modulating ventilation control
Refrigerant pressure gauges	Electronic thermostatic valve
Top remoting	Buffer coil for electronic thermostatic valve
Evaporator anti-freeze resistance + pipes	DC fans
Evaporator anti-freeze resistance - storage tank	RS485 Modbus Serial Card (INCLUDED)
Coil bottom resistance panel kit	

HZN	STD	(standard) version		082A	102A	122A	152A	123A	133A	153A	134A	154A	126A
	SEA	SONAL COOLING PERFORMANCE	E (Rea. EU 201	6/2281)									
				3.42	3.73	3.64	3.94	3.53	3.96	4.12	3.75	4.05	3.69
				134	146	143	155	138	155	162	147	159	145
6		Cooling potential	kW	38.8	45.9	58.2	79.2	88.1	99.9	113.5	128.3	154.6	170.6
COOLING	35/	Total absorbed power (1)	kW	15.1	16.8	22.2	28.2	33.9	35.6	42.0	47.7	55.5	64.8
	§	EER (EN 14511-2013)	1000	2.5	2.7	2.6	2.8	2.6	2.8	2.7	2.7	2.7	2.6
	. ≥	Cooling potential	kW	53.2	63.3	79.3	107.5	120.4	139.5	152.8	177.3	209.1	234.0
	35/	Total absorbed power (1)	kW	16.2	18.1	24.2	30.8	36.9	38.8	46.4	52.7	60.9	70.4
	V18	EER (EN 14511-2013)	KVV	3.2	3.4	3.2	3.4	3,2	3.5	3,2	3.3	3.4	3,2
NI - 4 -						5,2	5.4	3,2	3.5	5,2	3.3	5.4	5,2
Note		outdoor air temperature in °C / W = w				/		· \ D	FILO	/			
		SONAL HEATING PERFORMANCE	. (Low tempera			_			_				
)P		3.24	3.36	3.34	3.29	3.33	3.47	3.66	3.28	3.25	3.51
				126.8	131.3	130.6	128.6	130	136	143.3	128.4	126.9	137.3
		T -		A+	A+	A+							
	2	Thermal potential	kW	47.4	55.6	67.9	95.0	106.7	118.9	139.2	154.9	185.1	211.9
	W35	Total absorbed power (1)	kW	12.4	14.0	17.7	23.7	27.8	29.8	34.3	39.7	46.8	55.3
퓨		COP (EN 14511-2013)		3.8	3.9	3.8	4.0	3.8	4.0	4.0	3.9	3.9	3.8
HEATING	A7/	Thermal potential	kW	46.7	54.4	66.4	88.6	104.6	114.0	129.8	148.6	172.9	208.4
์ ด	¥ 4	Total absorbed power (1)	kW	14.8	16.8	21.1	27.8	33.0	35.3	40.3	47.3	55.2	66.4
-		COP (EN 14511-2013)		3.1	3,2	3.1	3,2	3.1	3,2	3,2	3.1	3.1	3.1
	A2,	Thermal potential	kW	42.7	49.9	61.0	84.6	96.0	105.3	123.9	136.9	164.7	190.9
	₩3	Total absorbed power (1)	kW	12.5	14.2	18.0	23.4	28.1	29.3	33.7	38.9	46.0	55.6
		COP (EN 14511-2013)		3.4	3.5	3.4	3.6	3.4	3.6	3.6	3.5	3.5	3.4
	A2	Thermal potential	kW	42.2	49.1	60.0	78.5	94.5	101.9	115.1	133.2	153.4	188.4
	Ž	Total absorbed power (1)	kW	14.7	16.7	21.0	27.3	32.7	34.9	39.6	46.7	54.1	65.7
	55	COP (EN 14511-2013)		2.9	2.9	2.8	2.9	2.9	2.9	2.9	2.8	2.8	2.8
Note	: A - o	outdoor air temperature in°C / W = w	vater output te	mperatur	e in °C								
Maxi	mum (current	А	38.6	43.2	54.0	71.0	80.5	89.2	99.7	114.5	132.7	151.7
Start	ing cu	rrent	Α	116.0	134.3	145.2	178.9	172.4	195.8	207.6	221.1	238.9	241.3
Scro	II Com	pressors	No.	2	2	2	2	3	3	3	4	4	6
Cool	ing cire	cuits	No.	1	1	1	1	1	1	1	2	2	2
Parti [.]	tioning	a steps	No.	2	2	2	2	3	3	3	4	4	6
		ply voltage	V/Ph/Hz				400/3/5	0 (5 wire:	s L1+L2+	L3+N+T			
			dB(A)	79.5	79.5	79.5	83.0	82.2	82.2	83.7	82.5	85.2	84.3
		ssure Lp (2)	dB(A)	47.8	47.8	47.8	51.1	50.3	50.3	51.8	50.5	53.2	52.3
PLAI	NT SIE	DE EXCHANGER											
Tvpe	of flui	id						Clean	water				
			No.	1	1	1	1	1	1	1	1	1	1
		*	l/s	1.8	2.2	2.6	3.8	4.1	4.8	5.4	6.1	7.4	8.1
	SEASO SEER 7 A35/W7 E E C A35/W18 E C SEASO SCOP 7 Energy A7/W35 A7/W45 A2/W35 A2/W45 C C A - outcommun current commun current current commun current commun current	rop (A35/W7)	KPa	19.9	20.6	29.4	17.1	19.7	19.1	24.7	31.3	35.8	43.5
VEN	TILAT	ING SECTION											
	fans		No.	1	1	1	2	2	2	2	2	3	3
		ow .	m³/s	6.5	6.4	6.4	13.0	13.0	12.8	12.8	12.5	18.6	18.1
			min-1	890	890	890	890	890	890	890	890	890	890
		bed power	kW	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
		bed current	A	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
UI IIL	ausUl	DCG CUITCIT		J./	J./	J./	J./	J.1	J./	J./	J./	J./	J./
DIME	ENSIO	ONS AND WEIGHTS (without acces	ssories)										
Widt			mm	1955	1955	1955	3005	3005	3005	3005	4255	4255	4255
			mm	1123	1123	1123	1123	1123	1123	1123	1123	1123	1123
Wid+			(11111									1954	1954
Widt Heig	ht		mm	1954	1954	1954	1954	1954	1954	1954	1954	1957	

A7/W35 Outdoor air temperature: 7°C - Plant fluid temperature (water): 30/35 °C A7/W45 Outdoor air temperature: 7°C - Plant fluid temperature (water): 40/45 °C A2/W35 Outdoor air temperature: 2°C - Plant fluid temperature: (water): 30/35 °C A2/W45 Outdoor air temperature: 2°C - Plant fluid temperature: (water): 40/45 °C A35/W7 Outdoor air temperature: 35°C - Plant fluid temperature: (water): 12/7 °C A35/W18 Outdoor air temperature: 35°C - Plant fluid temperature: (water): 23/18 °C (11) Absorbed total electric sower systlyding nume on the plant side.

⁽¹⁾ Absorbed total electric power excluding pump on the plant side
(2) Sound power in accordance with ISO3744 standard. Average sound pressure level at 10 m in open field with unit positioned on reflective surface

HZN	SLN	version (silenced)		082A	102A	122A	152A	123A	133A	153A	134A	154A
	SEA	SONAL COOLING PERFORMANCE (Re	g) EU 2016/2	281)								
	SEEI	R		3.56	3.83	3.68	4.11	3.95	4.16	4.42	4.08	4.4
	SEA SEE 1 1 A35/W18 SEE 1 1 A35/W18 SEE 1 1 A35/W18 SEE 1 1 A35/W18 SEE 1 SEE			140	150	144	161	155	163	174	160	173
င္ပ		Cooling potential	kW	37.4	45.0	57.9	77.3	87.0	97.4	113.7	131.2	154.
٥	35/	Total absorbed power (1)	kW	15.0	16.9	21.0	27.9	31.8	35.5	40.9	46.7	53.9
Z	~	EER (EN 14511-2013)		2.5	2.6	2.7	2.8	2.7	2.7	2.7	2.8	2.8
٠,	≥	Cooling potential	kW	51.0	61.7	80.4	104.3	119.9	134.9	153.1	182.8	209.
	35/	Total absorbed power (1)	kW	16.3	18.3	22.5	30.6	34.4	39.2	45.3	51.2	59.3
	V18	EER (EN 14511-2013)	KVV	3.1	3.3	3.5	3.4	3.4	3.4	3.3	3.5	3.4
loto		utdoor air temperature in °C / W = water	output tomp			3.3	3.4	J.4	J.4	3.3	3.3	3.4
v ote		SONAL HEATING PERFORMANCE (Lov				orago clir	matic aro	a) Pog. FI	I 917/201	z		
			w temperatu	3.34	3.51	3.27	3.49	3.46	3.66	3.89	3.22	3.46
Note: A Note: A Note: A Maximu Starting Scroll C Cooling Partition Powers Sound Plate ex Fluid flo Pressur VENTIL Axial far Total air Rotatio Unit-ab				131	138	128	136	135	144	153	126	135
		rgy class	1114	A+	A+	A+	0.1.1	1015	447.4	1 40 0	155.6	407
	A 7	Thermal potential	kW	45.8	54.9	71.2	94.1	104.5	117.4	140.9	155.6	187.
	W35	Total absorbed power (1)	kW	11.9	13.5	18.3	22.7	26.7	28.8	33.3	39.9	45.3
		COP (EN 14511-2013)		3.8	4.0	3.8	4.1	3.9	4.0	4.2	3.9	4.1
₹	A7/	Thermal potential	kW	45.1	53.8	69.4	87.5	102.4	112.4	131.2	149.6	174.
Note: Maxin	¥ 4	Total absorbed power (1)	kW	14.2	16.3	21.9	26.7	32.1	34.3	39.4	47.5	53.7
		COP (EN 14511-2013)		3.1	3.3	3.1	3.3	3,2	3.3	3.3	3.1	3,2
	A2/	Thermal potential	kW	41.2	49.2	63.8	83.5	93.9	103.6	125.4	138.1	166.
	W ₃	Total absorbed power (1)	kW	12.0	13.7	18.5	22.3	27.0	28.3	32.7	39.2	44.5
	5	COP (EN 14511-2013)		3.4	3.6	3.4	3.7	3.5	3.6	3.8	3.5	3.7
	A2	Thermal potential	kW	40.8	48.5	62.4	77.6	92.3	100.6	116.3	134.1	155.
	§	Total absorbed power (1)	kW	14.2	16.2	21.7	26.2	31.8	33.8	38.6	46.9	52.7
	22	COP (EN 14511-2013)		2.9	3.0	2.9	2.9	2.9	3.0	3.0	2.8	2.9
Note	: A - o	utdoor air temperature in°C / W = water	output tempe	erature in '	°C							
Maxir	mum c	current	А	37.0	41.6	54.4	67.7	77.2	85.9	96.4	113.3	127.8
Start	ing cu	rrent	Α	115.2	133.5	148.7	177.3	170.8	194.2	206.0	221.3	236.
Scrol	II Com	pressors	No.	2	2	2	2	3	3	3	4	4
Cooli	ing circ	cuits	No.	1	1	1	1	1	1	1	2	2
	_		No.	2	2	2	2	3	3	3	4	4
	_	oly voltage	V/Ph/Hz			400	0/3/50 (5	wires L1+	-L2+L3+N	I+T)		
		•	dB(A)	76.4	76.4	78.8	80.1	79.1	79.1	80.8	80.8	82.3
		ssure Lp (2)	dB(A)	44.7	44.7	46.9	48.2	47.2	47.2	48.9	48.7	50.3
	о р. о о		J (: .)									
PLAN	NT SID	DE EXCHANGER										
Гуре	of flui	d						Clean wate	er			
, .			No.	1	1	1	1	1	1	1	1	1
		· ·	l/s	1.8	2.2	2.8	3.7	4.2	4.7	5.4	6.3	7.4
		rop (A35/W7)	KPa	19.2	19.8	32.8	16.3	20.6	18.2	24.8	32.8	35.8
1000	Jai e ai	() () () () () () () () () ()	141 4	13.2	13.0	32.0	10.5	20.0	10.2	21.0	32.0	33.0
/EN	TILAT	ING SECTION										
			No.	1	1	2	2	2	2	2	3	3
		04/	m³/s	5.5	5.4	11.0	11.0	10.8	10.8	10.5	15.6	15.1
			min-1	710.0	710.0	710.0	710.0	710.0	710.0	710.0	710.0	710.
			kW	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
		bed current	A	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
יווויר	ausur	DEG CUITETIL	A	Z.1	Z.1	Z.1	Z.1	Z.1	Z.1	Z.1	2.1	2.1
OIME	NSIO	NS AND WEIGHTS (without accessorie	es)									
Nidtl	h		mm	1955	1955	3005	3005	3005	3005	3005	4255	4255
Nidtl	h		mm	1123	1123	1123	1123	1123	1123	1123	1123	1123
Heial	ht		mm	1954	1954	1954	1954	1954	1954	1954	1954	1954
icidi												

A7/W35 Outdoor air temperature: 7°C - Plant fluid temperature (water): 30/35 °C A7/W45 Outdoor air temperature: 7°C - Plant fluid temperature (water): 40/45 °C A2/W35 Outdoor air temperature: 2°C - Plant fluid temperature (water): 30/35 °C A2/W45 Outdoor air temperature: 2°C - Plant fluid temperature (water): 40/45 °C A35/W7 Outdoor air temperature: 35°C - Plant fluid temperature (water): 40/45 °C

A35/W7 Outdoor air temperature: 2°C - Plant Tiuld temperature (water): 40/45°C A35/W7 Outdoor air temperature: 35°C - Plant fluid temperature (water): 12/7°C A35/W18 Outdoor air temperature: 35°C - Plant fluid temperature (water): 23/18°C (1) Absorbed total electric power excluding pump on the plant side (2) Sound pourprip assort/page: 11/27/44 steaders | Acceptage | Acceptag

⁽²⁾ Sound power in accordance with ISO 3744 standard. Average sound pressure level at 10 m in open field with unit positioned on reflective surface

LEGEND:

TW (°C)

- Temperature of water leaving the exchanger

TA (°C) - Outdoor air temperature

HZN STD / SLN basic unit without accessories	area A - D
HZN STD / SLN With 137DCC accessories	area B - E
HZN STD / SLN	temporary C area

137DCC... - Modulating ventilation control 137VEC... - Units with DC fans

BASIC UNIT

Connecting pipes to the exchanger supplied as standard.

(Protection against lack of flow included).

VERSION P1-P2 / PH1-PH2

Version with 1 or 2 circulation pumps (without inertial storage tank) including protection against lack of water flow, 6 Bar safety valve, expansion tank, pump shut-off taps (check valve on delivery pipe in the presence of 2 taps (check valve on delivery pumps).

VERSION P1S-P2S / PH1S-PH2S

pumps).

The storage tank is inserted in series with the water delivery pipe to the system.

HZN		082A	102A	122A	152A	123A	133A	153A	134A	154A	126
HYDRONIC SYSTEM KIT (ACCESSORY)											
Fluid flow (A35/W7)	l/s	1.85	2.19	2.8	3.79	4.2	4.77	5.42	6.13	7.39	8.15
Safety valve	Bar	6	6	6	6	6	6	6	6	6	6
Expansion tank	J	6	6	6	10	10	10	10	10	18	18
Maximum plant fluid pressure	Bar	6	6	6	6	6	6	6	6	6	6
	Bar	ь	ь	ь	ь	ь	ь	ь	Ь	Ь	Ь
VERSIONS: 1 standard pump											
No. pumps	No.	1	1	1	1	1	1	1	1	1	1
Useful external prevalence	Кра	138	132	107	118	108	98	77	96	73	80
Single absorbed power (each)	kW	1.1	1.1	1.1	1.5	1.5	1.5	1.5	2	2	2.5
Single absorbed current (each)	A	2.2	2.2	2.2	2.7	2.7	2.7	2.7	3.7	3.7	5
Empty weight	Kg	49	49	49	66	66	66	70	70	82	82
VERSIONS:1 HP pump											
No. pumps	No.	1	1	1	1	1	1	1	1	1	1
Useful external prevalence	Кра	169	164	141	157	147	138	119	135	111	138
Single absorbed power (each)	kW	1.4	1.4	1.4	2	2	2	2	2.5	2.5	3.3
Single absorbed current (each)	А	2.7	2.7	2.7	3.7	3.7	3.7	3.7	5	5	6
Empty weight	Kg	52	52	52	70	70	70	75	75	87	87
VERSIONS: 2 standard pumps	9		- 52								. 3,
No. pumps	No.	2	2	2	2	2	2	2	2	2	2
Useful external prevalence	Kpa	139	132	107	118	108	98	77	96	73	80
	kW	1.1	1.1	1.1	1.5	1.5	1.5	1.5	2	2	2.5
Single absorbed power (each)											
Single absorbed current (each)	A	2.2	2.2	2.2	2.7	2.7	2.7	2.7	3.7	3.7	5
Empty weight	Kg	77	77	77	100	100	100	108	108	120	12
VERSIONS: 2 HP pumps											
No. pumps	No.	2	2	2	2	2	2	2	2	2	2
Useful external prevalence	Кра	169	164	141	157	147	138	119	135	111	13
Single absorbed power (each)	kW	1.4	1.4	1.4	2	2	2	2	2.5	2.5	3.3
Single absorbed current (each)	A	2.7	2.7	2.7	3.7	3.7	3.7	3.7	5	5	6
Empty weight	Kg	83	83	83	108	108	108	118	118	130	130
VERSIONS: 1 standard pump + storage tank											
Storage tank	L	150	150	150	300	300	300	300	300	300	300
No. pumps	No.	1	1	1	1	1	1	1	1	1	1
Useful external prevalence	Kpa	138	132	107	118	108	98	77	96	73	80
Single absorbed power (each)	kW	1.1	1.1	1.1	1.5	1.5	1.5	1.5	2	2	2.5
Single absorbed current (each)	A	2.2	2.2	2.2	2.7	2.7	2.7	2.7	3.7	3.7	5
Empty weight	Kg	85	85	85	116	116	116	120	120	131	13
VERSIONS: 1 HP pump + storage tank	rkg	03	03	0.5	110	110	110	120	120	131	13
		150	150	150	300	300	300	300	300	300	300
Storage tank											
No. pumps	No.	1	1	1	1	1	1	1	1	1	1
Useful external prevalence	Kpa	169	164	141	157	147	138	119	135	111	13
Single absorbed power (each)	kW	1.4	1.4	1.4	2	2	2	2	2.5	2.5	3.3
Single absorbed current (each)	A	2.7	2.7	2.7	3.7	3.7	3.7	3.7	5	5	6
Empty weight	Kg	88	88	88	120	120	120	125	125	137	13
VERSIONS: 2 standard pumps + storage tank											
Storage tank	L	150	150	150	300	300	300	300	300	300	30
No. pumps	No.	2	2	2	2	2	2	2	2	2	2
Useful external prevalence	Кра	139	132	107	118	108	98	77	96	73	80
Single absorbed power (each)	kW	1.1	1.1	1.1	1.5	1.5	1.5	1.5	2	2	2.5
Single absorbed current (each)	А	2.2	2.2	2.2	2.7	2.7	2.7	2.7	3.7	3.7	5
Empty weight	Kg	104	104	104	141	141	141	148	148	160	16
VERSIONS: 2 HP pumps + storage tank		-	-				·				
Storage tank	L	150	150	150	300	300	300	300	300	300	300
No. pumps	No.	2	2	2	2	2		2	2	2	
							170				1.7
Useful external prevalence	Кра	169	164	141	157	147	138	119	135	111	13
Single absorbed power (each)	kW	1.4	1.4	1.4	2	2	2	2	2.5	2.5	3.3
Single absorbed current (each)	A	2.7	2.7	2.7	3.7	3.7	3.7	3.7	5	5	6
Empty weight	Kg	110	110	110	150	150	150	160	160	172	172

082

102

122 082

102

HZN STD

HZN SLN

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1/2" M

1/2" M

1/2" M

1/2" M

1/2" M

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

1"1/2

	HZN				
Model	STD	SLN			
102					
122		Х			
152	Х	Х			
123	Х	Х			
133	Х	Х			
153	Х	Х			
134	Х				

122

Х

1	Plant side - Fluid input
2	Plant side - Fluid output
3	Plant side - Tank dischar

4 (HRP) Partial heat recovery unit - Fluid output 5 (HRP) Partial heat recovery unit - Fluid input

n.a. not available V Victaulic M Male thread

		STD SERIES			HRP RE	COVERY
		1	2	3	4	5
	Model	IN	OUT	DRAIN STORAGE TANK	IN	OUT
	152	2"	2"	1/2" M	1"1/2	1"1/2
	123	2"	2"	1/2" M	1"1/2	1"1/2
HZN STD	133	2"	2"	1/2" M	1"1/2	1"1/2
310	153	2"	2"	1/2" M	1"1/2	1"1/2
	134	2"1/2	2"1/2	1/2" M	2"1/2	2"1/2
	122	1"1/2	1"1/2	1/2" M	1"1/2	1"1/2

	122	1"1/2	1"1/2	1/2" M	1"1/2	1"1/2
	152	2"	2"	1/2" M	1"1/2	1"1/2
HZN SLN	123	2"	2"	1/2" M	1"1/2	1"1/2
JLIN	133	2"	2"	1/2" M	1"1/2	1"1/2
	153	2"	2"	1/2" M	1"1/2	1"1/2

	HZN				
Model	STD	SLN			
153					
134		Х			
154	Х	Х			
126	Х				

		STD SERIES			HRP REC	COVERY
		1	2	3	4	5
	Model	IN	OUT	DRAIN STORAGE TANK	IN	OUT
HZN	154	2" 1/ 2	2" 1/ 2	1/2" M	2" 1/ 2	2" 1/ 2
STD	126	2" 1/ 2	2" 1/ 2	1/2" M	2" 1/ 2	2" 1/ 2
HZN	134	2" 1/ 2	2" 1/ 2	1/2" M	2" 1/ 2	2" 1/ 2
SLN	154	2" 1/ 2	2" 1/ 2	1/2" M	2" 1/ 2	2" 1/ 2

Plant side - Fluid input 1

2 Plant side - Fluid output 3

Plant side - Tank discharge Partial heat recovery unit - Fluid output

4 (HRP) 5 (HRP) Partial heat recovery unit - Fluid input

n.a. not available \vee Victaulic Μ Male thread

Reversible air-cooled heat pump

HZN PLUS series

GENERAL FEATURES

- High-efficiency heat pump with 190 to 320 kW potential.
- Multi-scroll unit with R410A refrigerant (R134a on request)
- Standard unit operating range, outdoor air: cooling from -15°C to + 45°C / heating from -10°C to +20°C
- Unit operating range with mounted accessories, outdoor air: cooling from -7°C to + 45°C / heating from -10°C to +35°C
- · High efficiency at partial loads
- · Optional internal hydronic kit
- Low sound level
- STD or SUPER-SILENT (SLN) version available
- · Standard RS485 card
- Wide range of optional accessories
- Robust and well-defined woodwork

HZN PLUS is a high-efficiency reversible air-cooled heat pump for outdoor with scroll compressors, available in an extensive range of multi-compressor models with 190 to 320 kW potential. All groups use R410A refrigerant (R134a version on request R134a), and are sized to achieve excellent energy efficiencies, particularly high in partial load operation.

HZN PLUS can be used in any plant setting, thanks to the compactness and the presence of an extensive range of equipment and accessories.

All models executed as standard place the compressors in an acoustically isolated compartment.

The noise emission is contained and compatible with required silence standards. For particularly low acoustic emission requirements, the SLN version is available on which, in addition to the enhancement of the sound proofing of the compressor compartment, low-speed fans and thermal exchange surfaces are used to ensure high energy efficiencies.

Both in the standard and low-noise version, all units can be integrated with optional devices that allow them to be adapted to various plant engineering requirements.

Among the most used are:

- Hydronic section with single pump P1;
- Hydronic section with double pump P2;
- Hydronic section with pump (single/double) and inertial storage tank AP1-AP2;
- APH1-APH2 with high prevalence;
- Inertial storage tank with serial connection to the plant or equipped with 4 connections with function of hydraulic separator between unit and user plant:
- HRP partial heat recovery;
- Electronic thermostatic valve.

ACCESSORIES AVAILABLE ON REQUEST					
1 pump	Rubber anti-vibration hydronic kit				
1 HP pump	Coil protection network				
2 pumps	Compressor soft starter kit				
2 HP pumps	Coil with pre-varnished fin				
1 pump + storage tank in series	Coil treated with Electrofin® varnish				
1 HP pump + storage tank in series	Coils with copper fin				
2 pumps + storage tank in series	Auto power factor correction kit cos φ 0,95)				
2 HP pumps + storage tank in series	Fan Kit / Res. Electric Q.E.				
Partial heat recovery (desuperheater)	Electrical panel resistance				
Refrigerant pressure gauges	Modulating ventilation control				
Top remoting	Electronic thermostatic valve				
Evaporator anti-freeze resistance + pipes	Buffer coil electronic thermostatic valve				
Evaporator anti-freeze resistance - storage tank	DC fans				
Coil bottom resistance panel	Spring anti-vibration mounts (pipes only)				
Compressor casing resistance (INCLUDED)	Spring anti-vibration mounts (pump + storage tank)				
Compressor magneto thermic protections	RS485 Modbus Serial Card (INCLUDED)				
Machine rubber vibration dampers Base / hydronic kit					

BASIC UNIT

Connecting pipes to the exchanger supplied as standard. (Protection against lack of flow included).

VERSION P1-P2 / PH1-PH2

Version with 1 or 2 circulation pumps (without inertial storage tank) including protection against lack of water flow, 6 Bar safety valve, expansion tank, pump shut-off taps (check valve on the delivery pipe in the presence of 2 $\,$ pumps).

VERSION P1S-P2S / PH1S-PH2S

Version with 1 or 2 circulation pumps with inertial storage tank including protection against lack of water flow, 6 Bar safety valve, expansion tank, pump shut-off taps (check valve on delivery pipe in the presence of 2 pumps).

The storage tank is inserted in series with the water delivery pipe to the system.

N PLU	JS STD (standard) version		136A	146A	156A	234A	284A	304A
	EASONAL COOLING PERFORMANCE (R	eg. EU 2016/2281)						
SE	EER		3.83	3.79	3.98	3.87	3.80	3.82
η			150	149	156	152	149	150
A35/W7	Cooling potential	kW	193.0	203.1	228.0	266.6	286.6	322.3
×	Total absorbed power (1)	kW	70.8	75.1	81.6	96.2	105.6	116.7
	EER (EIN 14511-2015)		2.7	2.7	2.8	2.8	2.7	2.7
A35/W18	Cooling potential	kW	262.4	273.3	302.6	359.5	387.7	435.7
	Total absorbed power (1)	kW	76.7	81.7	89.0	102.7	114.5	126.7
20	EER (EN 14511-2013)		3.3	3.3	3.3	3.4	3.3	3.4
	outdoor air temperature in°C / W = wate							
	EASONAL HEATING PERFORMANCE (Le	ow temperature app		_	_			
SC	COP		3,2	3.52	3.45	3.31	3.36	3.19
η			125	138	135	129	131	125
	nergy class		-	-	-	-	-	-
A7/W35	Thermal potential	kW	234.4	248.9	285.8	321.8	345.0	391.4
W3	Total absorbed power (1)	kW	59.1	61.7	67.0	79.7	85.2	94.3
	COF (LIV 14311=2013)		3.9	4.0	4.2	4.0	4.0	4.1
A7/W45	Thermal potential	kW	225.4	236.0	264.7	313.7	336.5	381.0
W4	Total absorbed power (1)	kW	70.4	73.4	79.7	98.1	105.2	116.2
	COP (EN 14511-2013)		3,2	3,2	3.3	3,2	3,2	3,2
A2/W35	Thermal potential	kW	207.7	220.1	252.8	285.7	306.1	346.9
W3	Total absorbed power (1)	kW	58.4	61.0	66.3	79.7	85.0	94.0
	COP (EN 14511-2013)		3.5	3.6	3.8	3.6	3.6	3.7
A ₂	Thermal potential	kW	201.7	210.4	234.3	280.5	301.1	340.6
A2/W45	Total absorbed power (1)	kW	69.8	72.7	78.6	98.0	105.2	116.0
Ú	COP (EN 14511-2013)		2.9	2.9	3.0	2.9	2.8	2.9
e: A -	outdoor air temperature in°C / W = wate	r output temperature	in °C					
imur	m current	A	186.6	194.8	211.2	249.1	267.1	293.1
	current	A	288.8	321.9	338.3	492.1	501.1	514.1
oll Co	ompressors	No.	6	6	6	4	4	4
oling o	circuits	No.	2	2	2	2	2	2
tition	ing steps	No.	6	6	6	4	4	4
ver su	upply voltage	V/Ph/Hz		400	/3/50 (5 wires	s L1+L2+L3+l	N+T)	
ınd po	ower Lw (2)	dB(A)	85.2	85.8	86.7	88.9	89.6	90.2
nd pr	ressure Lp (2)	dB(A)	53.0	53.6	54.5	56.6	57.3	57.8
NIT	CIDE EVOLUANCED							
e of f	SIDE EXCHANGER				Clash	water		
	changer	No.	1	1	1	water 1	1	1
	v (A35/W7)	I/s	9.2	9.7	10.9	12.7	13.7	15.4
	edrop (A35/W7)	KPa	39.0	38.2	38.6	48.2	38.9	39.9
JULIE	, al op (1 (33) ** 1)	IN Ø	33.0	JU.2	50.0	+∪.∠	50.5	J9.3
NTIL/	ATING SECTION							
al fans	S	No.	4	4	4	6	6	6
al air	flow	m³/s	23.7	23.7	22.8	35.1	35.1	33.6
ation	speed	min-1	885	885	885	885	885	885
-abs	orbed power	kW	1.7	1.7	1.7	1.7	1.7	1.7
	orbed current	А	3.7	3.7	3.7	3.7	3.7	3.7
	IONS AND WEIGHTS (with aut a	iaal						
ENC	IONS AND WEIGHTS (without accessor	ies)	44.05	4125	4125	5125	5125	5125
		mm	4175	41/5				
lth		mm	4125 2205	4125 2205				
		mm mm mm	2205 2266	2205 2266	2205	2205 2266	2205 2266	2205 2266

A7/W35 Outdoor air temperature: 7°C - Plant fluid temperature (water): 30/35 °C A7/W45 Outdoor air temperature: 7°C - Plant fluid temperature (water): 40/45 °C A2/W35 Outdoor air temperature: 2°C - Plant fluid temperature: (water): 30/35 °C A2/W45 Outdoor air temperature: 2°C - Plant fluid temperature: (water): 40/45 °C A35/W7 Outdoor air temperature: 35°C - Plant fluid temperature: (water): 12/7 °C A35/W18 Outdoor air temperature: 35°C - Plant fluid temperature: (water): 23/18 °C (11) Absorbed total electric sower systlyding nume on the plant side.

⁽¹⁾ Absorbed total electric power excluding pump on the plant side
(2) Sound power in accordance with ISO3744 standard. Average sound pressure level at 10m in open field with unit positioned on reflective surface.

		16/2201)	136A	146A	156A	254A	284A
		16/2281)	4.01	4.02	4.12	7 0 7	3.88
	1						152
	Cooling potential	L/ //					285.1
35/							103.3
× 7		KVV					2.7
≻		L\\/					385.0
35/	3.						112.6
V18	·	KVV					3.3
		emperature in °C	3.4	3.3	3.3	3.3	3.3
	·	-	rage climati	ic area) Reg. I	EU 813/2013		
			_	_		3.58	3.63
							142
	ray class			-	-	-	-
		kW		252 7	290.9	325.0	349.2
7/	•						82.2
35		1 \ V \ V					4.2
➤		kW					339.9
7/\	'						102.2
/45		I/V V					3.3
➤		k\/\/					309.2
2/	-						82.0
/35	·	IX V					3.7
>		k\//					303.9
2/	·						102.1
/45	·	N.V.V					3.0
Δ-0		emperature in °C	3.0	3.0	3.0	3.0	5.0
	•	-	180.0	188 2	204.6	239.2	257.2
							491.2
							431.2
	•						2
-							4
_	•		0				4
	•		92.1				86.6
							54.3
а ргез	33u1 θ Ερ (2)	UD(A)	43.3	30.0	31.0	34.3	34.3
IT SID	DE EXCHANGER						
of flui	id				Clean water		
excha	anger	No.	1	1	1	1	1
flow (A	435/W7)	l/s	9.2	9.7	11.2	12.7	13.6
sure dr	rop (A35/W7)	KPa	38.6	37.8	40.7	47.8	38.5
ΓILAT	ING SECTION						
fans		No.	4	4	4	6	6
air flo	W .	m³/s	18.8	18.8	29.1	27.7	27.7
ion sp		min-1	720	720	720	720	720
	bed power	kW	1.2	1.2	1.2	1.2	1.2
			2.1	2.1	2.1	2.1	2.1
	bed current	Α	2.1	2.1			
absor		A	2.1	2.1			2.1
absori	NS AND WEIGHTS (without accessories)						
absor :NSIO		mm	4125	4125	5125	5125	5125
absori							
i i i	SEA SEE 7 A35/W18 A - 0 SEA SCC 7 Ener Ener I Communication in ground dipres I SIL of fluid excharged flow (A sure difference of fluid excharged flow (A	Cooling potential Total absorbed power (1) EER (EN 14511-2013) Cooling potential Total absorbed power (1) EER (EN 14511-2013) A- outdoor air temperature in C / W = water output to SEASONAL HEATING PERFORMANCE (Low temper SCOP) In Energy class Thermal potential Total absorbed power (1) COP (EN 14511-2013) Thermal potential Total absorbed power (1) COP (EN 14511-2013) Thermal potential Total absorbed power (1) COP (EN 14511-2013) Thermal potential Total absorbed power (1) COP (EN 14511-2013) Thermal potential Total absorbed power (1) COP (EN 14511-2013) Thermal poten	SEASONAL COOLING PERFORMANCE (Reg. EU 2016/2281) SEER 1 2 3 3 3 3 4 3 5 5 4 5 5 6 6 7 1 2 5 1 2 3 3 3 3 3 3 3 4 3 3 4 3 4 3 4 3 5 5 3 4 3 5 5 4 4 5 5 5 5	SEASONAL COOLING PERFORMANCE (Reg. EU 2016/2281) SEER	SEER	SEER	SEEN

A7/W35 Outdoor air temperature: 7°C - Plant fluid temperature (water): 30/35 °C A7/W45 Outdoor air temperature: 7°C - Plant fluid temperature (water): 40/45 °C A2/W35 Outdoor air temperature: 2°C - Plant fluid temperature (water): 30/35 °C A2/W45 Outdoor air temperature: 2°C - Plant fluid temperature (water): 40/45 °C

A35/W7 Outdoor air temperature: 2°C - Plant fluid temperature (water): 40/45°C A35/W7 Outdoor air temperature: 3°C - Plant fluid temperature (water): 12/7°C A35/W18 Outdoor air temperature: 35°C - Plant fluid temperature (water): 23/18°C (1) Absorbed total electric power excluding pump on the plant side

 $⁽²⁾ Sound power in accordance with ISO 37 \overline{4}4 standard. Average sound pressure level at 10m in open field with unit positioned on reflective surface. \\$

LEGEND:

TW (°C) - Temperature of water leaving the exchanger

TA (°C) - Outdoor air temperature

HZN PLUS STD / SLN basic unit without accessories	area A - D
HZN PLUS STD / SLN With 137DCC accessories	area B - E
HZN PLUS STD / SLN	temporary C area

137DCC... - Modulating ventilation control

137VEC... - Units with DC fans

CHILLER HZN PLUS HYDRONIC KIT Technical Data

HZN PLUS		136A	146A	156A	234A	284A	304A
HYDRONIC SYSTEM KIT (ACCESSORY)							
Fluid flow (A35/B7) STD	l/s	9.23	10.14	11.09	12.74	14.21	16.00
Safety valve	Bar	6	6	6	6	6	6
Expansion tank	L	1 x 25	1 x 25	1 x 25	2 x 25	2 x 25	2 x 25
Maximum plant fluid pressure	Bar	6	6	6	6	6	6
VERSIONS: 1 STD pump							
No. pumps	No.	1	1	1	1	1	1
Useful external prevalence	Кра	114	102	93	118	106	120
Single absorbed power (each)	kW	2.2	2.2	2.2	3.0	3.0	4.0
Single absorbed current (each)	A	4.6	4.6	4.6	6.3	6.3	7.8
Empty weight	Kg	55	55	55	80	80	80
VERSIONS:1 HP pump							
No. pumps	No.	1	1	1	1	1	1
Useful external prevalence	Кра	157	147	149	135	186	174
Single absorbed power (each)	kW	3	3	4	4	5.5	5.5
Single absorbed current (each)	A	6.3	6.3	7.8	7.8	10.4	10.4
Empty weight	Kg	62	62	62	87	87	87
VERSIONS: 2 STD pumps							
No. pumps	No.	2	2	2	2	2	2
Useful external prevalence	Кра	114	102	93	118	106	120
Single absorbed power (each)	kW	2.2	2.2	2.2	3.0	3.0	4.0
Single absorbed current (each)	А	4.6	4.6	4.6	6.3	6.3	7.8
Empty weight	Kg	98	98	98	133	133	133
VERSIONS: 2 HP pumps							
No. pumps	No.	2	2	2	2	2	2
Useful external prevalence	Кра	157	147	149	135	186	174
Single absorbed power (each)	kW	3	3	4	4	5.5	5.5
Single absorbed current (each)	А	6.3	6.3	7.8	7.8	10.4	10.4
Empty weight	Kg	112	112	112	147	147	147
VERSIONS: 1 standard pump + storage tank							
Storage tank	L	500	500	500	750	750	750
No. pumps	No.	1	1	1	1	1	1
Useful external prevalence	Кра	114	102	93	118	106	120
Single absorbed power (each)	kW	2.2	2.2	2.2	3.0	3.0	4.0
Single absorbed current (each)	А	4.6	4.6	4.6	6.3	6.3	7.8
Empty weight	Kg	121	121	121	176	176	176
VERSIONS: 1 HP pump + storage tank							
Storage tank	L	500	500	500	750	750	750
No. pumps	No.	1	1	1	1	1	1
Useful external prevalence	Кра	157	147	149	135	186	174
Single absorbed power (each)	kW	3	3	4	4	5.5	5.5
Single absorbed current (each)	A	6.3	6.3	7.8	7.8	10.4	10.4
Empty weight	Kg	128	128	128	183	183	183
VERSIONS: 2 standard pumps + storage tank	9	120	120	120	100	100	100
Storage tank	L	500	500	500	750	750	750
No. pumps	No.	2	2	2	2	2	2
Useful external prevalence	Kpa	114	102	93	118	106	120
Single absorbed power (each)	kW	2.2	2.2	2.2	3.0	3.0	4.0
Single absorbed power (each)	A	4.6	4.6	4.6	6.3	6.3	7.8
Empty weight	Kg	164	164	164	229	229	229
VERSIONS: 2 HP pumps + storage tank	ı iy	104	104	104	223	223	223
	1	E00	E00	EOO	750	750	750
Storage tank	L	500	500	500	750	750	750
No. pumps	No.	157	1.47	140	175	106	174
Useful external prevalence	Кра	157	147	149	135	186 5.5	174 5.5
6: 1 1 1 1 1 1 1 1 1				4	4	LE	5.5
Single absorbed power (each) Single absorbed current (each)	kW A	6.3	6.3	7.8	7.8	10.4	10.4

	HZN PLUS				
Model	STD	SLN			
136	х	Х			
146	х	Х			
156	Х				

					Victaulic	Storage tank	Condensate		
			Pla	ant	Partial r	ecovery	drain	drain	
		Version	Model	1	2	3	4	5	6
			Model	IN	OUT	OUT	IN	OUT	OUT
	HZN	STD	136-146 156	3"	3"	1"1/2	1"1/2	1" M Gas	Ø 40
	PLUS	SLN	136-146	3"	3"	1″1/2	1″1/2	1" M Gas	Ø 40

	HZN PLUS							
Model	STD	SLN						
156		Х						
234	Х	Х						
284	Х	Х						
304	Х							

				Victaulic o	Storage tank	Condensate		
			Pla	int	Partial re	ecovery	drain	drain
	Version	Model	1	1 2		4	5	6
		riodei	IN	OUT	OUT	IN	OUT	OUT
HZN	STD	234-284 304	4"	4"	2"	2"	1" M Gas	Ø 40
PLUS	SLN	156	3"	3"	1"1/2	1″1/2	1" M Gas	Ø 40
	SLN	234-284	4"	4"	2"	2"	1" M Gas	Ø 40

- 1 Fluid input
- 2 Fluid output
- 3 Drain (1)
- 4 Fluid output
- 5 Fluid input
- G Male threaded coupling
- V Victaulic-type coupling
- (1) Only versions with hydronic kits
- n.a. not available

CHILLER

V-HP series

Reversible cooled heat pump with inverter/scroll compressors & DC fans for outdoor installation

The V-HP series lends itself to a wide range of customisations, from compressor technology to the condensation method and the type of refrigerant, including a vast range of accessories that can be selected and pre-assembled at the factory.

GENERAL FEATURES

Haier's Chiller V-Range is characterised by its reliability and durability, which ensures important benefits in terms of reducing management and maintenance costs.

These chillers are characterised by a lightweight and compact structure that makes them suitable for various applications. In addition to this, the reduced vibrations and very low noise levels mean that these chillers can be used in both civil and industrial (comfort cooling) applications.

Haier has always been attentive to the environment and the specific needs of its customers, which is why the V-Range is developed to ensure maximum performance in accordance with all current energy regulations.

V-HP heat pump reversible Chillers are mounted on a self-supporting metal structure, painted with appropriately treated epoxy powders for outdoor installation.

All units are fully wired and ready to be connected to the user system.

The units are designed, built and certified in accordance with European Union regulations.

Each machine undergoes a performance test according to the strictest rules in place with intervention tests for all the safety systems and components installed.

Each unit is supplied with DC-controlled speed fans. Characterised by a wide operating range and used for two-pipe hydronic circuits, they produce hot water up to 55 °C* during winter and chilled water during summer.

* Based on the operational limitations of the compressor and the refrigerant gas and the temperature trend of the outdoor air

THE BASIC VERSION INCLUDES:

- Scroll Compressor
- Microchannel condenser
- Brazed plate evaporator
- AC/DC fan as per technical reference data
- Safety valves (if required by EN 378)
- Pressure switch
- Pressure transducer
- · Dehydration filter
- Inspection glass
- Electronic expansion valve (equipped with backup coil for emergency closure)
- Water temperature sensors
- · Water flow switch
- Water filter
- Anti-freeze resistance
- Refrigerant charge
- Electrical panel with main switch, fuses, phase sequence control
- Electronic board for unit management: input / output water temperatures, cooling capacity, working hours of each compressor, high / low pressure alarms, condensation pressure regulation. (For all other available functions refer to the general manual)
- Standard equipment includes digital input for remote ON / OFF control, digital out for signalling unit alarm status.

Model V-HP (IT INVERTER compressors)	0020IT	0030IT	0037IT	0042IT	0050IT	0060IT	0066IT	0077IT	0090IT			
Nominal cooling power (1)	20.2	30.6	36.7	41.8	49	59.9	66	76.5	86.1			
Nominal absorbed power (1)	kW	6.7	10.2	13	14.7	17	19	21	24.5	28.8		
EER	W/W	3.01	3	2.83	2.85	2.88	3.15	3.14	3.12	2.99		
SEER (EN 14511-2018) (2)	W/W	4.67	5.01	4.6	4.58	4.35	5.04	5.03	4.94	4.82		
Nominal heating power (8)	kW	22.9	33.1	40.1	46.2	53	63.5	70.3	81.7	92.4		
Nominal absorbed power (8)	kW	7.1	9.9	12	14.1	16	18.3	19.9	23.5	27.9		
C.O.P. (water 40/45 - T outdoor + 7°C)	W/W	3.25	3.34	3.34	3.28	3.31	3.47	3.53	3.48	3.31		
C.O.P. For deductions (water 30/35 - T outdoor + 7°C)	W/W	4.08	4.03	4.08	3.9	3.91	4.12	4.26	4.21	3.99		
SCOP (EN 14511-2018) (2)	W/W	3.37	3.9	4.01	3.66	3.72	4.1	4.17	4.11	3.76		
Refrigerant Gas - R410A (9)	Kg	6.5	7.5	8.0	8.9	9.3	12.1	12.5	17.0	17.7		
Sound pressure level at 1 m	dB(A)	70.1	71.2	70.6	73.7	73.1	75.8	75.9	79.3	82.7		
Sound pressure level at 1 m ((7) optional unit LN) (3)	dB(A)	65.5	64.1	63.8	67.4	67.2	68.0	68.1	70.5	73.9		
Sound pressure level at 5 m	dB(A)	59.6	60.7	60.1	63.2	62.6	65.4	65.5	68.9	72.2		
Sound pressure level at 5 m ((7) optional unit LN) (3)	dB(A)	55.1	53.7	53.4	57.0	56.7	57.6	57.6	60.0	63.5		
Sound pressure level at 10 m (3)	dB(A)	53.6	54.7	54.1	57.2	56.6	59.3	59.4	62.9	66.2		
Sound pressure level at 10 m ((7) optional unit LN) (3)	dB(A)	49.0	47.6	47.3	50.9	50.7	51.6	51.6	54.0	57.5		
Compressor typology	Type	INVERTER SCROLL										
Number of compressors	No.	1	1	1	1	1	1	1	1	1		
Number of circuits	No.	1	1	1	1	1	1	1	1	1		
Condenser typology (4)	Type	e Microchannel / finned										
Number of fans and typology	No. / type	2/AC	1/DC	1/DC	1/DC	1/DC	2/DC	2/DC	2/DC	2/DC		
Evaporator typology (5)	Type	Plates	Plates	Plates	Plates	Plates	Plates	Plates	Plates	Plates		
Input/output pipe diameter	"	1"1/4	1"1/2	1"1/2	1"1/2	1"1/2	2"	2"	2"	2"		
Indoor pressure drop	Кра	30	31	32	35	45	42	50	46	47		
Minimum volume of water needed in the plant	L	30	80	80	80	80	160	160	160	160		
Nominal water flow	m³/h	4	6	7	8	9	11	12	14	16		
Electric Power (5 wires L1+L2+L3+N+T)	V/Ph/Hz	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50		
Rated current	Α	11.4	17.3	22	24.9	28.9	32.3	35.7	41.7	49		
Maximum current	Α	26	31.2	46.9	46.9	55	55	76.3	76.3	76.3		
Starting current	Α	33	35	51	51	59	62	84	84	84		
Length with electrical panel (6)	mm	1600	1750	1750	1750	1750	2760	2760	2760	2760		
Width (6)	mm	590	1050	1050	1050	1050	1050	1050	1050	1050		
Height	mm	1250	2430	2430	2430	2430	2430	2430	2430	2430		
Weight in transport (7)	Kg	351	628	679	698	722	955	1062	1090	1100		
Weight in use (7)	Kg	357	638	692	711	735	974	1081	1113	1123		

Model V-HP (FS multi-scroll compressors)		0100FS	0110FS	0125FS	0135FS	0150FS	0170FS	0190FS	0230FS	0250FS	0280FS	
Nominal cooling power (1)	kW	97.7	108.6	124.6	134.4	149.7	169	190	225.4	244	271.2	
Nominal absorbed power (1)	kW	32.2	37.5	40.2	45.1	50.2	53.7	63.7	72.3	81.3	88.1	
EER	W/W	3.04	2.9	3.1	2.98	2.98	3.15	2.98	3.12	3	3.08	
SEER (EN 14511-2018) (2)	W/W	4.36	4.1	4.36	4.16	4.22	4.37	4.26	4.35	4.32	4.38	
Nominal heating power (8)	kW	102.1	114.4	130.6	142.1	159	177.7	204.6	236.3	259.3	286.7	
Nominal absorbed power (8)	kW	31.7	35.6	40.4	44.2	49.3	53.5	62.8	72	79.1	89.8	
C.O.P. (water 40/45 - T outdoor + 7°C)	W/W	3.22	3.22	3.23	3.22	3.23	3.32	3.26	3.28	3.28	3.19	
C.O.P. For deductions (water 30/35 - T outdoor + 7°C)	W/W	4.18	4.05	4.17	4.07	4.12	4.33	4.14	4.1	4.07	4.14	
SCOP (EN 14511-2018) (2)	W/W	3.61	3.57	3.62	3.53	3.6	3.85	3.32	3.42	3.55	3.6	
Refrigerant Gas - R410A (9)	Kg	21.3	22.2	29.2	32.0	32.7	39.9	41.8	50.7	52.6	59.8	
Sound pressure level at 1 m	dB(A)	74.0	74.7	74.4	75.2	75.6	73.6	77.0	78.0	78.0	78.2	
Sound pressure level at 1 m ((7) optional unit LN) (3)	dB(A)	69.5	69.7	68.8	71.1	71.2	71.8	72.5	73.5	73.5	74.1	
Sound pressure level at 5 m	dB(A)	63.6	64.2	64.0	64.7	65.1	63.2	66.6	67.5	67.5	67.7	
Sound pressure level at 5 m ((7) optional unit LN) (3)	dB(A)	59.04	59.23	58.33	60.63	60.73	61.32	62.05	63.00	63.00	63.64	
Sound pressure level at 10 m (3)	dB(A)	57.6	58.2	57.9	58.7	59.1	57.2	60.6	61.5	61.5	61.7	
Sound pressure level at 10 m ((7) optional unit LN) (3)	dB(A)	53.0	53.2	52.3	54.6	54.7	55.3	56.0	57.0	57.0	57.6	
Compressor typology	Type		Multi Scroll									
Number of compressors	No.	2	2	2	2	2	4	4	4	4	4	
Number of circuits	No.	1	1	1	1	1	2	2	2	2	2	
Condenser typology (4)	Type	Microchannel / finned										
Number of fans and typology	No. / type	2/DC	2/DC	3/DC	3 / DC	3/DC	4/DC	4/DC	5/DC	5/DC	6/DC	
Evaporator typology (5)	Type	Plates	Plates	Plates	Plates	Plates	Plates	Plates	Plates	Plates	Plates	
Input/output pipe diameter	"	2"1/2	2"1/2	3"	3"	3"	3"	3"	3"	3"	3"	
Indoor pressure drop	Кра	50	41	42	42	52	46	61	43	50	64	
Minimum volume of water needed in the plant	L	160	160	350	350	350	350	350	350	350	350	
Nominal water flow	m³/h	18	20	23	25	28	31	36	41	45	50	
Electric Power (5 wires L1+L2+L3+N+T)	V/Ph/Hz	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	380/3/50	
Rated current	Α	54.7	63.7	68.3	76.6	85.4	91.3	108.3	123	138.3	149.8	
Maximum current	Α	90.4	105.4	116.1	123.1	139.1	158.8	180.8	214.5	228.5	246.2	
Starting current	Α	256	271	320	327	387	319	346	380	432	450	
Length with electrical panel (6)	mm	2760	2760	3860	3860	3860	2774	2774	3821	3821	3821	
Width (6)	mm	1050	1050	1050	1050	1050	2100	2100	2100	2100	2100	
Height	mm	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	
Weight in transport (7)	Kg	1265	1284	1523	1539	1670	1945	2188	2574	2609	2784	
Weight in use (7)	Kg	1281	1305	1548	1564	1695	1984	2226	2633	2668	2851	

- Nominal data for input / output water 12/7 °C outdoor air 35 °C
 Contact with the manufacturer for seasonal energy indicators
 Measured sound pressure in open field (directivity factor=2) according to ISO 3744
- (4) Finned microchannel
- (5) Brazed plate exchanger
- (6) Hydronic connections and lifting brackets excluded

- (7) LN option (compressor compartment)
 (8) Nominal data for water 40/45 °C outdoor air 7 °C RH 87%
 9 Estimated refrigerant charge. The data can be modified in accordance with technical and design improvements and / or variations of the unit and its components.

All data is subject to change without notice by the manufacturer $\,$

CODE	
ACCESSORY	DESCRIPTION
HR	Partial heat recovery: Through an auxiliary heat exchanger the unit can produce hot water using the hot gas temperature, simultaneously with the production of chilled water. It is not possible to produce hot water if there is no chilled water production. Partial heat recovery: to avoid malfunctions or reductions in the thermal capacity of the chiller's reversible heat pump. Partial heat recovery must be disabled by the user during winter mode operation. Partial heat recovery: the exchanger is not suitable for the direct flow of hot water and it is therefore mandatory to use an additional heat exchanger to separate the circulating water inside the cooler from the sanitary water and each are required by local laws and regulations. Partial heat recovery: the user must provide a minimum heating power dissipation. Installers must provide ally other safety device required by local laws and regulations for the production of hot water. Partial heat recovery: the user must make sure that the water temperature is above 35 °C during the operation of the compressor.
LN	Standard soundproofing with only panels: metal compartment for housing the compressors equipped with removable doors for service access and inspection.
XLN	Extra soundproofing with panels and sound insulation: metal compartment for housing the compressors equipped with removable doors for service access and inspection. The internal surface is covered with sound-absorbing material to decrease the noise emission of the compressors.
V	Variable speed pump (inverter), additional option to the normal pump that can be used for the correct calibration of the delivery pressure - the primary circuit always remains at constant flow
Т	Inertial storage tank (pressurised): The equipment consists of a pressurised tank, insulation, pre-pressurised closed expansion tank, air and drain valves, safety valve calibrated to the circuit PS.
FL	Flow switch: electromechanical type; suitable to increase the safety of the flow control in the evaporator; supplied separately to be installed by the user
MR	Refrigerant pressure gauges: a high-pressure gauge and a low-pressure gauge for each refrigerant circuit
MH	Water pressure gauges: a pressure gauge on the input side and a pressure gauge on the output side of the hydronic circuit
RIF	Current re-phaser:
LSC	Soft starter:
TD7	Touch screen display 7"
TD10	Touch screen display 10"
RS485	Modbus RTU
RS485-IP	Modbus TCP/IP: Ethernet connection
BAC	Bacnet interface:
BAC1	BACNet/IP:
BAC2	BACNet MS/TP:
WEB	Reach Web Monitoring System: Allows viewing the main working parameters and alarm history, resetting the alarm and updating the SW remotely via WEB of the main unit. It is supplied standard with a 3G modem.
LON	LonWorks interface:
AV1	Antivibration mounts: type with rubber damping element
AV2	High performance anti-vibration mount: type with metal spring suspension element
EP1.x	Pump kit: Centrifugal pump safety valve in the input section, air vent valve, drain valve
EP2.x	Double pump kit: Centrifugal pumps check valves, safety valve in the input section, air vent valve, drain valve
	Double pump kit: The operating pressure of the hydronic circuits is reduced to PS = 4 bar
EP3.x	Pump kit: Centrifugal pump safety valve in the input section, air vent valve, drain valve
EP4.x	Double pump kit: Centrifugal pumps check valves, safety valve in the input section, air vent valve, drain valve
EP5	Single pump with high prevalence (electrical data declared separately from the unit's main data): water flow and differential pressure according to user requirements. Depending on the performance required, the basic dimensions of the unit may vary. Consult the manufacturer before ordering.
EP6	Double pump with high prevalence (electrical data declared separately from the unit's main data): water flow and differential pressure according to user requirements. Depending on the performance required, the basic dimensions of the unit may vary. Consult the manufacturer before ordering.
RLD	Refrigerant leak detector: Installable only in case of compressor compartment equipped with doors. It allows to monitor the eventual leakage of refrigerant from the circuits. The alarm is signalled by a potential-free switching contact, which can be used for remote signalling.
GP	Metal grills for coil protection

Accessory		Compatibility of V-HP models (IT INVERTER compressors) / accessories										
code		0020IT	0030IT	0037IT	0042IT	0050IT	0060IT	0066IT	0077IT	0090IT		
HR	Partial heat recovery (desuperheater)	•	•	•	•	•	•	•	•	•		
LN	Compressor compartments with panels	NA		•	•	•	•	•	•			
XLN	Compressor compartments with panels and sound insulation	NA	•	•	•	•	•	•	•	•		
V	Variable speed pump (inverter)	NA	•	•	•	•	•	•	•	•		
т	Inertial storage tank (pressurised)	NA	•	•	•	•	•	•	•	•		
'	Illustrative volume (litres)		80	80	80	80	160	160	160	160		
FL	Flow switch	•	•	•	•	•	•	•	•	•		
MR	Refrigerant pressure gauges	•	•	•	•	•	•	•	•	•		
MH	Water pressure gauges			•	•	•	•	•				
RIF	Current re-phaser	•	•	•	•	•	•	•	•			
LSC	Soft start	NA	NA	NA	NA	NA	NA	NA	NA	NA		
TD7	Touch screen 7"	NA	NA	NA								
TD10	Touch screen 10"	NA	NA	NA								
RS485	Modbus RTU											
RS485-IP	Modbus TCP/IP							•				
BAC	Bacnet Interface											
BAC1	BACNet/IP											
BAC2	BACNet MS/TP											
WEB	Management via web											
LON	LonWorks Interface											
AV1	Anti-vibration mounts											
AV2	High-performance anti-vibration mounts											
EP1.x	Single pump with low prevalence - 60 to 100 kPa	NA										
EP2.x	Double pump with low prevalence - 60 to 100 kPa	NA	NA	NA	NA	NA						
EP3.x	Single pump with average prevalence - 130 to 170 kPa											
EP4.x	Double pump with average prevalence - 130 to 170 kPa	NA	NA	NA	NA	NA						
EP5.x	Single pump with high prevalence over 170 kPa; on request.	•	•	•	•	•		•	•	•		
EP6.x	(electrical data declared separately from the unit's main data) Double pump with high prevalence over 170 kPa; on request. (electrical data declared separately from the unit's main data)	NA	NA	NA	NA	NA	•	•	•	•		
RLD	Refrigerant leak detector	•	•	•	•	•	•	•	•	•		
GP	Metal grills for coil protection	NA	•	•	•	•	•	•	•	•		

Accessory		Compatibility of V-HP models (FS multi-scroll compressors) / accessories										
code	Accessory description	0100FS	0110FS	0125FS	0135FS	0150FS	0170FS	0190FS	0230FS	0250FS	0280FS	
HR	Partial heat recovery (desuperheater)	•	•	•	•	•	•	•	•	•	•	
LN	Compressor compartments with panels		•	•	•	•	•	•	•	•	•	
XLN	Compressor compartments with panels and sound insulation											
٧	Variable speed pump (inverter)											
	Inertial storage tank (pressurised)											
Т	Illustrative volume (litres)	160	160	350	350	350	350	350	350	350	350	
FL	Flow switch											
MR	Refrigerant pressure gauges											
МН	Water pressure gauges								•		•	
RIF	Current re-phaser											
LSC	Soft start								•		•	
TD7	Touch screen 7"	•		•		•	•	•	•	•	•	
TD10	Touch screen 10"	•		•	•	•	•	•	•	•	•	
RS485	Modbus RTU	•		•	•	•	•	•	•	•	•	
RS485-IP	Modbus TCP/IP									•	•	
BAC	Bacnet Interface											
BAC1	BACNet/IP					•	•	•		•	•	
BAC2	BACNet MS/TP		•	•	•	•	•	•	•	•	•	
WEB	Management via web	•	•	•	•	•	•	•	•	•	•	
LON	LonWorks Interface		•	•	•	•	•	•	•	•	•	
AV1	Anti-vibration mounts		•	•	•	•	•	•	•	•	•	
AV2	High-performance anti-vibration mounts	•	•	•	•	•	•	•	•	•	•	
EP1.x	Single pump with low prevalence - 60 to 100 kPa	•	•	•	•	•	•	•	•	•	•	
EP2.x	Double pump with low prevalence - 60 to 100 kPa			•	•	•	•	•	•	•	•	
EP3.x	Single pump with average prevalence - 130 to 170 kPa	•	•	•	•	•	•	•	•	•	•	
EP4.x	Double pump with average prevalence - 130 to 170 kPa	•	•	•	•	•	•	•	•	•	•	
EP5.x	Single pump with high prevalence over 170 kPa; on request.					•		•				
EP6.x	(electrical data declared separately from the unit's main data) Double pump with high prevalence over 170 kPa; on request. (electrical data declared separately from the unit's main data)	•	•	•	•	•	•	•	•	•	•	
RLD	Refrigerant leak detector	•	•	•	•	•	•	•	•	•	•	
GP	Metal grills for coil protection					•				•	•	

$\ensuremath{\mathsf{NA}}$ - $\ensuremath{\mathsf{Not}}$ available / not expected

^{• =} available option

V-HP 0170FS - 0190FS from 170 to 190 kW multi-scroll

- 1. WATER INPUT 3"
- 2. WATER OUTPUT 3"
- 3. SUPERHEATER INPUT 2" (HR recovery version)
- 4. SUPERHEATER OUTPUT 2" (HR recovery version)
- 5. TOTAL RECOVERY INPUT 3" (HRT total recovery)
- 6. TOTAL RECOVERY OUTPUT 3" (HRT total recovery)
- 7. FASTENERS FOR ANTIVIBRATION (AV version)
- 8. SERVICE PANEL (LN/XLN version) 9. POWER CABLE PASSAGE
- 10. AIR EXCHANGER
- 11. ELECTRIC BOARD CIRCUIT PANEL
- 12. LIFTING POINTS

Note: all hydraulic connections are of the "Victaulic" type equipped with clamps and rigid stub

V-HP 0230FS - 0250FS - 0280FS from 225 to 280 kW multi-scroll

- 1. WATER INPUT 3"
- 2. WATER OUTPUT 3"

- 2. WALER OUTPUT 3
 3. SUPERHEATER INPUT 2" (HR recovery version)
 4. SUPERHEATER OUTPUT 2" (HR recovery version)
 5. TOTAL RECOVERY INPUT 3" (HRT total recovery)
 6. TOTAL RECOVERY OUTPUT 3" (HRT total recovery)
- 7. FASTENERS FOR ANTIVIBRATION (AV version)
- 8. SERVICE PANEL (LN/XLN version)
- 9. POWER CABLE PASSAGE 10. AIR EXCHANGER
- 11. ELECTRIC BOARD CIRCUIT PANEL
- 12. LIFTING POINTS

Note: all hydraulic connections are of the "Victaulic" type equipped with clamps and rigid stub

Notes:

Other versions, even if not mentioned or not available, can be evaluated on specific request in accordance with the operating limits of the project, the components and the type of refrigerant gas

Not all refrigerant gases can be used on the total available power range.

 $Depending on the type of \ request \ and \ in \ compliance \ with \ the \ energy \ indices \ imposed \ by \ legislation, \ the \ manufacturer \ assesses \ the \ applicability \ of \ the \ inverter \ technology \ in \ depending \ on \ the \ dependent \ and \ inverter \ technology \ in \ dependent \ depen$ accordance with all the other aspects related to the specific project.

 $[\]label{pre-design} \textit{Pre-design} \ \textit{and} \ \textit{sizing} \ \textit{on} \ \textit{required} \ \textit{specification} \ \textit{is} \ \textit{done} \ \textit{without} \ \textit{commitment}.$

The selection of a screw or piston compressors is dependent on the specific requirements of the user, and according to the operational limits required and compatible and compatible and compatible and compatible are considered as a constant of the user. The selection of the user is a constant of the user is a constant of the user is a constant of the user. The user is a constant of the user is a constant of the user is a constant of the user. The user is a constant of the user iswith the chosen refrigerant gas.

^{***} With reference to current energy standards, single-compressor / single-circuit sizes are equipped with inverter technology.

CHILLER

Hydronic Terminals

Floor - Slim Design Ceiling

Floor-Ceiling

4-Way Cassette

Ducted Medium PA

Ducted High PA

Ducted Super Silent

Ducted Smart Single Block

Hi-Wall

The lines represented in this section indicate the types of hydronic terminals available.

For any products with special configurations, contact headquarters.

HYDRONIC TERMINALS HACI H-SL Floor - Ceiling

Thanks to the special configuration of the exchanger, in combination with the electronics, the valve and the DC motor, it is possible in some situations to activate and appreciate the heating in the form of radiation.

More precisely, when approaching the desired temperature, the fan slows down until it almost stops, thus making the noise subtle with only 19db, while the electrical consumption drops below 3 Watts.

In this mode there will be a heat production comparable to a static and not dynamic element.

INTRODUCTION

The new H-SL terminal has been designed and built to fit discreetly and elegantly in residential and commercial applications, where products with clean, harmonious and subtle shapes, guaranteeing comfort and silence in any scenario.

This new line of terminals is equipped with advanced electronics, brushless DC motors to minimise noise and energy consumption.

The high efficiency water / air exchanger is designed to work with low temperature fluid which is ideal for heat pumps or condensing boilers.

The depth is only 119mm; the low thickness makes it perfectly integrable in blind spaces and in renovations.

ELECTRONIC CONTROL

Simple and intuitive digital user interface, installable on the machine or on the wall, allows you to manage the following functions:

- Manual or automatic selection of the operating mode
- Manual or automatic selection of the ventilation speed
- Water temperature probe
- Silent mode (night)
- Semi static heating function.
- Possibility of integration with MODBUS home automation systems (with additional module)
- Master/slave functionality

Standard SX (left) couplings. On demand DX (right) couplings.

For more information, contact headquarters

	VERTICAL VB VERSION WITH MOBILE											
(MOD.	A (mm)	B (mm) *	C (mm)	Weight (kg)								
15	600	580	119	17								
35	800	580	119	20								
45	1000	580	119	23								
55	1200	580	119	26								

	HORIZONTAL HB VERSION WITH MOBILE										
(MOD.	A (mm)	C (mm) *	Weight (kg)								
15	600	119	580	17							
35	800	119	580	20							
45	1000	119	580	23							
55	1200	119	580	26							

A - length mm - B - height mm - C - depth mm

	VD VERTICAL VERSION WITHOUT MOBILE											
(MOD.	A (mm)	B (mm)	C (mm)	Weight (kg)								
15	480	555	120	9								
35	680	555	120	12								
45	880	555	120	15								
55	1080	555	120	18								

A - length mm - B - height mm - C - depth mm

Н	HORIZONTAL HD VERSION WITHOUT MOBILE											
(MOD.	A (mm)	B (mm)	C (mm)	Weight (kg)								
15	520	126	555	9								
35	720	126	555	12								
45	920	126	555	15								
55	1120	126	555	18								

L MOBILE AIR

^{*} Add 80 mm for caps

HYDRONIC TERMINALS HACI **H-SL** Floor - Ceiling

POSSIBLE CONFIGURATIONS

Electronic control that can be installed on the wall or on board the machine. Management with **STAND ALONE**.

Management of multiple MASTER / SLAVE units with single electronic wall controller.

Management with **Modbus** supervision with optional BMS-SP3 module. In this case, the unit can work with/or without a keypad.

LEGEND: SND: water probe SND-AIR: air probe

L				15	35	45	55
		MAX	m3/h	180	340	500	600
S	Airflow	MED	m3/h	130	235	340	415
		MIN	m3/h	60	120	175	215
		MAX	kW	0.83	1.61	2.56	3.28
	Total cooling power (1)	MED	kW	0.66	1.24	1.93	2.48
		MIN	kW	0.37	0.74	1.14	1.46
		MAX	kW	0.68	1.32	2.02	2.53
	Sensitive cooling power	MED	kW	0.53	0.98	1.49	1.88
XXX		MIN	kW	0.28	0.56	0.85	1.07
7		MAX	l/h	142	277	440	564
	Exchanger water flow	MED	l/h	114	214	332	427
	-	MIN	l/h	63	127	196	250
		MAX	Кра	9	6	18	33
	Primary exchanger pressure drop	MED	Кра	6	4	11	20
		MIN	Кра	2	2	4	8
		MAX	kW	0.97	1.88	2.83	3.51
	Exchanger thermal power (2)	MED	kW	0.75	1.40	2.07	2.59
	, , , , , , , , , , , , , , , , , , ,	MIN	kW	0.40	0.80	1.18	1.47
		MAX	l/h	169	325	490	607
307	Exchanger water flow	MED	l/h	131	242	359	449
1	3	MIN	l/h	69	137	204	254
		MAX	Кра	10	7	19	33
	Exchanger pressure drop	MED	Кра	7	5	11	19
		MIN	Кра	2	2	4	7
		MAX	dB(A)	53	53	54	54
	Sound power level	MED	dB(A)	45	46	46	46
		MIN	dB(A)	37	38	38	38
		MAX	dB(A)	44	44	45	45
	Sound pressure level	MED	dB(A)	36	37	37	37
		MIN	dB(A)	28	29	29	29
		MAX	W	11	19	20	24
	Absorbed power	MED	W	6	11	12	15
\bigcirc	1.13.333 po.1.3.	MIN	W	5	6	7	9
	Maximum motor electric absorption	7 111 8	A	0.1	0.2	0.2	0.2

(1) Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C (2) Hot: T. Ambient: 20° C - T. water (in/out): 45/40 °C

HYDRONIC TERMINALS HACI H-ZE Floor - Ceiling

H-ZE_VA Vertical lower view of intake

H-ZE_VB Vertical front view of intake with "CZF" kit

H-ZE_HA Horizontal lower view of intake

H-ZE_HB Horizontal front view of intake with "CZF" kit

H-ZE_VC Vertical built-in

H-ZE_HC Horizontal built-in

INTRODUCTION

The H-ZE series fan coil unit in the VA-VB-HA-HB-VC-HC versions, comes with adjustable grids and the option of having lower or frontal intake.

Particular attention was paid to creating an interlocking side body panel which makes installation easier.

The pleasant design, the silence, the versatility, the quality components and the wide range of accessories make this fan coil unit an excellent product for heating and conditioning any residential and commercial environment. The model is also available with a DC motor for greater energy savings and noise reduction.

The fan coils are supplied with connections on the right side unless otherwise specified, with the possibility of reversibility during installation; a 4-pipe version is also available.

SATH4

H-ZE_VA_VB_HA_HB_VC_HC			316	628	840	1250	1575	1885
ROWS			3	3	3	3	4	4
2-PIPE PLANT								
	MAX	m³/h	332	522	692	1060	1359	1744
Airflow	MED	m³/h	289	450	595	963	1204	1557
	MIN	m³/h	196	304	421	611	877	1102
	MAX	kW	1.70	2.72	3.87	5.23	7.65	10.00
Total cooling power (1)	MED	kW	1.50	2.41	3.45	4.88	6.98	9.17
	MIN	kW	1.07	1.75	2.65	3.52	5.43	7.05
	MAX	kW	1.22	1.95	2.68	3.60	5.39	6.88
Sensitive cooling power	MED	kW	1.12	1.75	2.40	3.36	4.94	6.37
	MIN	kW	0.83	1.31	1.86	2.45	3.90	4.93
	MAX	l/h	291	467	665	898	1313	1715
exchanger water flow	MED	l/h	257	413	592	838	1197	1574
	MIN	l/h	184	299	454	604	932	1209
	MAX	Кра	6.7	7.0	16.7	28.9	12.8	24.0
Primary exchanger pressure drop	MED	Кра	5.3	5.6	13.5	25.4	10.8	20.5
-	MIN	Кра	2.9	3,2	8.3	14.0	6.9	12.7
	MAX	kW	2.27	3.62	4.94	6.77	9.92	12.70
Exchanger thermal power (2)	MED	kW	2.05	3.20	4.40	6.34	9.02	11.64
•	MIN	kW	1.50	2.37	3.34	4.50	7.00	8.84
	MAX	l/h	291	467	665	898	1313	1715
Primary exchanger water flow	MED	l/h	257	413	592	838	1197	1574
	MIN	l/h	184	299	454	604	932	1209
Primary exchanger pressure drop	MAX	Кра	5.8	6.0	14.1	24.5	10.8	20.1
	MED	Кра	4.6	4.8	11.4	21.6	9.2	17.2
	MIN	Кра	2.5	2.7	7.0	11.8	5.8	10.6
	MAX	kW	1.90	2.98	4.13	5.37	6.97	8.83
ditional exchanger thermal power	MED	kW	1.80	2.74	3.78	5.06	6.48	8.28
3	MIN	kW	1.37	2.13	3.06	3.81	5.35	6.72
	MAX	l/h	167	262	363	471	612	775
Additional exchanger water flow	MED	l/h	158	241	332	445	570	728
idanional oxenanger maser nen	MIN	l/h	121	187	269	334	470	590
	MAX	Кра	5.2	2.4	5.3	8.7	16.2	28.2
Additional exchanger pressure drop	MED	Кра	4.7	2.1	4.5	7.8	14.2	25.1
	MIN	Кра	2.8	1.3	3.1	4.6	9.9	17.1
	MAX	dB(A)	46	46	52	62	5.9	65
Sound power	MED	dB(A)	43	43	48	59	55	62
Journa power	MIN	dB(A)	33	34	37	59	48	55
	MAX	dB(A)	37	37	43	53	49	56
Sound pressure level (3)	MED	dB(A)	34	34	39	50	49	53
oduna pi essai e ievel (3)								46
	MIN	dB(A)	24	25	28	140	39	
beautied manual	MAX	W	33	43	87	140	147	184
Absorbed power	MED	W	27	3	72	118	135	163
	MIN	W	16	21	42	69	107	124
Maximum motor electric absorption		A	0.15	0.19	0.38	0.61	0.68	0.82
Water content		L	0.256	0.397	0.540	0.540	0.683	0.791
Electric heater		W	1000	1250	2000	2000	3000	3000
Plumbing connections			1/2"	1/2"	1/2"	1/2"	1/2"	1/2"

NOTE: Other sizes with optional coil (308 to 2; 320/634/847/1260 to 4 rows) available on the selection program.

⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
(2) Hot: T. Ambient: 20° C - T. water (in/out): 50 ° C - same cooling water flow rate

⁽³⁾ Sound pressure levels are lower than power levels of 9 dB (A) for an environment of $100\,\mathrm{m}^3$ with reverberation time of 0.5 seconds

H-ZE_VA_VB_HA_HB_VC_HC			316	628	840	1250	1575	1885
ROWS			3	3	3	3	4	4
2-PIPE PLANT								
	MAX	m³/h	359	535	850	1004	1364	1473
Airflow	MED	m³/h	251	346	538	624	599	638
	MIN	m³/h	187	259	304	372	293	306
	MAX	kW	1.78	2.76	4.49	5.04	7.68	8.78
Total cooling power (1)	MED	kW	1.35	1.95	3.19	3.58	3.69	4.49
	MIN	kW	1.04	1.50	2.03	2.41	2.12	2.41
	MAX	kW	1.31	1.99	3.10	3.47	5.41	6.13
Sensitive cooling power	MED	kW	1.01	1.46	2.24	2.47	2.90	3.21
3.	MIN	kW	0.80	1.16	1.45	1.69	1.53	1.68
	MAX	l/h	306	474	771	865	1318	1507
Exchanger water flow	MED	l/h	231	335	548	614	680	770
	MIN	l/h	178	258	348	413	363	413
	MAX	Кра	7.3	7.3	21.8	26.9	12.9	18.9
Primary exchanger pressure drop	MED	Кра	4.4	3.9	11.7	14.4	3.9	5.6
Timuly exchanger pressure drop	MIN	Кра	2.7	2.4	5.2	7.0	1.3	1.9
	MAX	kW	2.41	3.69	5.77	6.53	9.96	11.13
Exchanger thermal power (2)	MED	kW	1.84	2.63	4.07	4.56	5.10	5.58
exchanger thermal power (2)	MIN	kW	1.44	2.07	2.56	3.03	2.71	2.88
	MAX	I/h	306	474	771	865	1318	1507
Primary exchanger water flow	MED	I/h	231	335	528	614	680	707
Filliary exchanger water now	MIN	I/h	178	258	348	413	363	413
	MAX			6.2				15.9
Drimany avahangar praesure dran		Кра	6.4	3.3	18.5 9.9	22.9	10.9	
rimary exchanger pressure drop	MED	Кра	3.8			12.2	3,2	4.7
	MIN	Кра	2.3	2.0	4.3	5.9	1.0	1.5
	MAX	kW	2.05	3.05	4.47	5.21	6.90	8.03
Additional exchanger thermal power	MED	kW	1.63	2.33	3.56	3.88	4.20	4.76
	MIN	kW	1.36	1.95	2.45	2.80	2.63	2.92
	MAX	I/h	180	268	417	458	606	705
Additional exchanger water flow	MED	I/h	143	205	313	341	369	418
	MIN	l/h	119	172	215	246	231	256
	MAX	Кра	6.0	2.6	6.9	8.2	15.9	23.7
Additional exchanger pressure drop	MED	Кра	3.9	1.5	4.1	4.8	6.4	9.1
	MIN	Кра	2.8	1.1	2.0	2.6	2.7	3.7
	MAX	dB(A)	48	49	55	59	64	64
Sound power	MED	dB(A)	39	39	43	48	44	45
	MIN	dB(A)	32	32	31	35	40	36
	MAX	dB(A)	39	40	46	50	55	55
Sound pressure level (3)	MED	dB(A)	30	30	34	39	35	36
	MIN	dB(A)	23	26	22	26	31	27
	MAX	W	14	19	35	58	107	108
Absorbed power	MED	W	7	9	12	19	19	17
	MIN	W	5	7	7	8	5	6
Maximum motor electric absorption		А	0.12	0.15	0.25	0.41	0.93	0.92
FCEER-COOLING CLASS			А	А	А	А	А	А
FCCOP-HEATING CLASS 2T			А	А	А	А	А	А
FCCOP-HEATING CLASS 4T			В	В	А	В	В	В
Water content		L	0.256	0.397	0.540	0.540	0.683	0.791
Electric heater		W	1000	1250	2000	2000	3000	3000
Plumbing connections			1/2"	1/2"	1/2"	1/2"	1/2"	1/2"

NOTES FOR DC MOTOR:

 $Speed\ data\ under\ the\ following\ conditions:$

Size: 3-6 Max= 8.5 Volt - Med= 4.5 Volt - Min= 2.5 Volt. - Size: 8 Max= 9 Volt - Med= 4.5 Volt - Min= 2,5 Volt $Size: 12\ Max=8.5\ Volt-Med=4.5\ Volt-Min=2\ Volt.-Size\ 15-18: Max=7.5\ Volt-Med=3\ Volt-Min=1\ Volt-Med=3\ Vol$ For 4-pipe systems see auxiliary coil in note 2.

 ⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
 (2) Hot: T. Ambient: 20° C - T. water (in/out): 50° C - same cooling water flow rate
 (3) Sound pressure levels are lower than power levels of 9 dB (A) for an environment of 100 m³ with reverberation time of 0.5 seconds

SIZE	A (mm)	Weight (kg)
308	860	17
316	860	17
320	860	18
628	1120	18
634	1120	22
840	1380	22
847	1380	23
1250	1380	29
1260	1380	28
1575	1640	29
1885	1900	35

VC built-in vertical installation - HC built-in horizontal installation

Intake side view

 $NOTE: Coupling \ side; \ standard \ connections \ are \ on \ the \ right \ side.$ (Left side connections are available on request. However in any case it is convertible during installation)

SIZE	A (mm)	Weight (kg)
308	746	15
316	746	15
320	746	16
628	1006	16
634	1006	19
840	1266	19
847	1266	20
1250	1266	24
1260	1266	23
1575	1526	24
1885	1786	29

MPK-C 62x62 cm panel with Coanda effect

PPK-D Panel 62x62 - 90x90 cm

INTRODUCTION

The H-FLAT units are available with 2 types of panel. The MPK-C series is designed to guarantee high comfort.

The problematic currents of cold air are avoided by the particular shape of the panel, which introduces the air into the environment with a COANDA effect.

The COANDA effect is the tendency of a fluid to follow the contour of a nearby surface: the air in this case follows the false ceiling, then falls back on the walls. Since the speed of the incoming air is very low, it does not create inconvenience to people as it falls at the area perimeter. In the event that the ceiling height of the room is greater than 3m and consequently there is a need to direct the flow of hot air downwards, it is advisable to use the PPK-D series panel equipped with 4 classic deflectors with adjustable angles.

In this way it is possible to manually set the orientation of the air flow independently for each of the four deliveries. The MPK-C and PPK-D panels have actual dimensions of 62x62 so they do not overlap with the classic frames of the ceilings for 60x60 panels.

For sizes 27-28, the unit is an 80x80 with a 90x90 panel. All units are equipped with a standard condensate drain pump. A wide range of accessories is available to meet all plant engineering requirements.

It is recommended that cassette units have valves installed to stop the flow of water when it is not required in order to guarantee greater comfort in the environment and avoid stratification.

HACI **H-FLAT** 4-Way Cassette **60x60** Technical Data

60x60 cassette with AC r	60x60 cassette with AC motor		12			22			32		42		
2-PIPE PLANT								-					
Speed		min	med	max	min	med	max	min	med	max	min	med	max
Air flow	mc/h	280	400	515	280	400	610	320	570	840	440	680	975
COOLING - Air 27 °C d.b.	., 19 °C w.b v	vater input	7°C, wate	r output 1	2°C								
Total capacity	kW	1.7	2.3	2.7	2.1	2.8	3.9	2.3	3.7	5.1	3.0	4.3	5.7
Sensitive capacity	kW	1.2	1.6	2.0	1.5	2.0	2.8	1.7	2.6	3.6	2.2	3.0	4.0
Water flow	l/h	290	391	473	353	476	675	393	640	874	515	738	978
Pressure drop	Кра	3,2	5.5	7.8	3.3	5.7	10.7	4.0	9.8	17.1	6.5	12.6	20.5
HEATING - Air 20 °C - wa	ter input 50 °C	:											
Total capacity	kW	2.1	2.7	3.3	2.4	3,2	4.6	2.7	4.3	5.9	3.5	5.0	6.6
Water flow	l/h	290	391	473	353	476	675	393	640	874	515	738	978
Pressure drop	Кра	3.0	5.2	7.4	3.1	5.3	10.1	3.8	9.2	16.4	6.2	12.0	19.2
ELECTRICAL ABSORPTION	ONS												
Absorbed power	W	46	55	61	46	55	68	46	63	76	55	70	81
Absorbed current	А		0.28			0.31		0.35				0.37	
SOUND LEVEL													
Sound power	dB(A)	32	40	47	32	40	52	35	50	60	43	54	63
Sound pressure	dB(A)	23	31	38	23	31	43	26	41	51	34	45	54

60x60 cassette with DC	motor			32-DC					42-DC		
2-PIPE PLANT											
Speed		min	med		max		min	med		max	
Signal		2V	4V	6V	8V	10V	2V	4V	6V	8V	10V
Air flow	mc/h	260	410	560	710	860	260	410	560	710	860
COOLING - Air 27 °C d.b	o., 19 °C w.b w	ater input 7 °	C, water ou	tput 12 °C							
Total capacity	kW	1.6	2.3	2.9	3.5	4.0	1.9	2.8	3.7	4.5	5.2
Sensitive capacity	kW	1.2	1.6	2.1	2.4	2.8	1.4	2.0	2.6	3.1	3.6
Water flow	l/h	270	395	503	594	682	331	481	630	763	885
Pressure drop	Кра	3,2	5.6	8.7	11.8	15.3	3.0	5.9	9.4	13.3	17.6
HEATING - Air 20 °C - w	ater input 50°C										
Total capacity	kW	1.9	2.8	3.5	4.1	4.8	2.2	3.3	4.3	5.2	6.0
Water flow	l/h	270	395	503	594	682	331	481	630	763	885
Pressure drop	Кра	2.7	5.3	8.3	11.3	14.6	2.7	5.5	9.0	12.7	16.6
ELECTRICAL ABSORPT	IONS										
Absorbed power	W	8	12	18	27	42	8	12	18	27	42
Absorbed current	А			0.20					0.20		
SOUND LEVEL											
Sound power	dB(A)	30	41	49	55	60	30	41	49	55	60
Sound pressure	dB(A)	21	32	40	46	51	21	32	40	46	51
FCEER				А					Α		
FCCOP				В					А		

90x90 cassette with AC	motor		272			282	
2-PIPE PLANT							
Speed		min	med	max	min	med	max
Air flow	mc/h	540	730	1250	730	1250	1700
COOLING - Air 27 °C d.t	b., 19 °C w.b wate	er input 7°C , water	output 12 °C				
Total capacity	kW	4.3	5.4	8.5	5.4	8.5	10.8
Sensitive capacity	kW	2.9	3.8	5.9	3.8	5.9	7.4
Water flow	l/h	735	935	1455	935	1455	1850
Pressure drop	Кра	6.0	9.4	20.4	9.4	20.4	31.4
HEATING - Air 20 °C - w	ater input 50°C						
Total capacity	kW	5.0	6.5	10.3	6.5	10.3	13.2
Water flow	l/h	735	935	1455	935	1455	1850
Pressure drop	Кра	4.7	7.5	16.8	7.5	16.8	26.1
ELECTRICAL ABSORPT	IONS						
Absorbed power	W	35	53	101	53	101	140
Absorbed current	А		0.5			0.7	
SOUND LEVEL							
Sound power	dB(A)	31	37	51	37	51	58
Sound pressure	dB(A)	22	28	42	28	42	49

90x90 cassette with DC	motor			282-DC		
2-PIPE PLANT	'					
Speed		min		med		max
Signal		2V	4V	6V	8V	10V
Air flow	mc/h	750	997	1245	1491	1740
COOLING - Air 27 °C d.t	o., 19 °C w.b wate	er input 7°C , water out	put 12 °C			
Total capacity	kW	5.6	7.1	8.5	9.8	11.0
Sensitive capacity	kW	3.9	4.9	5.8	6.7	7.5
Water flow	l/h	960	1218	1456	1674	1882
Pressure drop	Кра	9.9	15.0	20.5	26.3	32.3
HEATING - Air 20°C - w	ater input 50 °C					
Total capacity	kW	6.7	8.5	10.3	11.9	13.5
Water flow	l/h	960	1218	1456	1674	1882
Pressure drop	Кра	7.9	12.2	16.8	21.7	27.0
ELECTRICAL ABSORPT	IONS					
Absorbed power	W	12	22	40	68	107
Absorbed current	А			0.80		
SOUND LEVEL						
Sound power	dB(A)	35	45	50	55	59
Sound pressure	dB(A)	26	36	41	46	50
FCEER				А		
FCCOP				А		

1	Main water input	1/2"
2	Main water output	1/2"
3	Auxiliary water input	1/2"
4	Auxiliary water output	1/2"
5	Condensate drain connection	d.12

SIZE		272-282	274-284 (4t)
Weight	Kg	50	50
Internal volume of the primary exchanger	L	4.0	3.6
Auxiliary exchanger internal volume	L	18	1.1

829×820

1	Auxiliary water input	1/2"
2	Auxiliary water output	1/2"
3	Main water input	3/4"
4	Main water output	3/4"
5	Condensate drain connection	d.12

SIZE		272-282	274-284 (4t)
Weight	Kg	50	50
Internal volume of the primary exchanger	L	4.0	3.6
Auxiliary exchanger internal volume	L	18	1.1

HP 70 and HP 150 Horizontal standard version

INTRODUCTION

The H-HP series, ducted units for heating and air conditioning systems with a prevalence of 70 to 400 PA (AC and DC motors) are ideal for small, medium and large centralised air conditioning systems where the distribution of air in the room takes place through special ducts. Refrigerating powers range from 4 to 43 kW (2 tubes).

The HP 70 unit has a height ranging from 300 to 375mm and has been developed with quality components facilitating the installation, accessibility and maintenance operations by the final installer. High-prevalence fans are sized to provide 70 PA pressure at nominal range.

The units are available in the horizontal STANDARD or

vertical versions ON REQUEST with AC and DC motors. A wide range of accessories are available alongside the basic units.

The HP 150 units have a height ranging from 370 to 485 mm. The high prevalence fans are sized to provide up to 400 PA (size 81 with DC motor) pressure at the nominal

HP 150 is available in the standard version without filter, with single horizontal panel and AC / DC motors. Other double panel configurations are available on request (double casing for noise containment). A wide range of accessories are available alongside the basic units.

on demand

A = length mm B = height mm C = depth mmThe arrows indicate the IN and OUT of the main coil For more information, see the technical manual

HACI H-HP 70 Ducted Medium Pressure with AC Motor, Technical Data

HP 70 DC motors			21	31	38	41	81*
ROWS			3	3	3	3	3
2-PIPE PLANT							
	MAX	Pa	68	56	59	64	67
Useful air prevalence	MED	Pa	50	50	50	50	50
	MIN	Pa	23	40	38	37	35
	MAX	m³/h	880	1630	2009	3071	4037
Airflow	MED	m³/h	752	1555	1854	2722	3516
	MIN	m³/h	508	1374	1619	2326	2980
	MAX	kW	4.06	7.62	8.76	14.62	17.62
Total cooling power (1)	MED	kW	3.63	7.38	8.31	13.42	16.06
	MIN	kW	2.74	6.78	7.60	12.05	14.27
	MAX	kW	2.87	5.32	6.14	10.21	12.25
Sensitive cooling power	MED	kW	2.59	5.16	5.80	9.40	11.09
5.	MIN	kW	1.96	4.74	5.29	8.45	9.97
	MAX	l/h	697	1307	1503	2509	3024
Exchanger water flow	MED	l/h	623	1266	1425	2302	2756
3	MIN	l/h	470	1163	1303	2067	2449
	MAX	Кра	16.6	17.8	23.1	16.0	22.5
Primary exchanger pressure drop	MED	Кра	13.5	16.8	20.9	13.7	19.0
. ,	MIN	Кра	8	14.4	17.7	11.2	15.3
	MAX	kW	5.41	10.06	11.65	19.28	23.38
Exchanger thermal power (2)	MED	kW	4.83	9.75	10.80	17.65	21.22
Exchanger thermal power (2)	MIN	kW	3.60	8.91	10.02	15.74	18.85
	MAX	l/h	697	1307	1503	2509	3024
Exchanger water flow	MED	l/h	623	1266	1397	2302	2756
	MIN	l/h	470	1163	1303	2067	2449
	MAX	Кра	14.4	15.2	19.7	13.5	19.0
Exchanger pressure drop	MED	Кра	11.7	14.3	17.2	11.5	16.0
Exchanger pressure drop	MIN	Кра	6.9	12.3	15.1	9.5	12.9
	MAX	dB(A)	65	69	70	70	77
Sound power, intake + radiation	MED	dB(A)	60	68	67	68	74
Sound power, intake - radiation	MIN	dB(A)	51	64	65	65	70
	MAX	dB(A)	64	68	69	69	76
Sound power delivered	MED	dB(A)	59	67	66	67	73
SSS a porter delivered	MIN	dB(A)	50	63	64	64	69
	MAX	W W	150	225	303	549	914
Absorbed power	MED	W	129	191	258	486	814
Absoluted power	MIN	W	70	168	233	402	620
Maximum motor electric absorption	ITHIN	A	0.8	1.3	1.6	2.5	4.5
riaximum motor electric absorption	MAX	dB(A)	56	60	61	61	68
Sound pressure level, intake + radiation (3)	MED	dB(A)		59	58	59	65
Sound pressure level, ifflake + faulation (5)	MIN	dB(A)	51 42	55	56	56	61
	MAX	dB(A)	55	55	60	60	67
Cound procedure level delivers							
Sound pressure level delivered	MED	dB(A)	50	58	57	58	64
	MIN	dB(A)	41	54	55	55	60
Electric heater		kW	2.5		OV-50Hz single-ph		6.0
Di Li			2.5	4.5	4.5	6.0	6.0
Plumbing connections			3/4"	3/4"	3/4"	1"	1"

 $Note: Other \ sizes \ with \ optional \ coil \ (81\ a\ 3+1;\ 21/31/38/41/81\ a\ 4+1,\ 3+2,\ 4+2\ rows)\ are\ available\ on\ the\ selection\ program.$ The data shown refers to Soffio\ single\ panel in the selection program. version.

⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
(2) - 2-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 50° C - same cooling water flow rate

^{- 4-}pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 70/60° C

 $^{(3) \ \} Sound \ pressure \ levels \ are \ lower \ than \ power \ levels \ of 9 \ dB \ (A) \ for \ an \ environment \ of 100 \ m^3 \ with \ reverberation \ time \ of 0.5 \ seconds$

 $^{{}^{\}ast}$ Size 81 outperforms the maximum values envisaged by the Eurovent program for ducted FCUs

IP 70 DC motors			21	31	38	41	81*
DDITIONAL COIL			3+1	3+1	3+1	3+1	3+1
-PIPE PLANT							
	MAX	Pa	67	55	58	64	67
Iseful air prevalence	MED	Pa	50	50	50	50	50
	MIN	Pa	23	40	38	37	36
	MAX	m³/h	856	1582	1939	3033	3989
irflow	MED	m³/h	734	1506	1798	2695	3453
	MIN	m³/h	500	1344	1573	2312	2946
	MAX	kW	3.99	7.47	8.59	14.52	17.38
otal cooling power (1)	MED	kW	3.58	7.20	8.14	13.34	15.85
	MIN	kW	2.70	6.68	7.45	11.97	14.23
	MAX	kW	2.80	5.20	5.96	10.11	12.19
ensitive cooling power	MED	kW	2.54	5.02	5.66	9.32	11.01
	MIN	kW	1.94	4.66	5.19	8.40	9.85
	MAX	l/h	684	1282	1474	2491	2982
changer water flow	MED	l/h	614	1236	1397	2289	2720
	MIN	l/h	463	1146	1278	2054	2441
	MAX	Кра	16.0	17.2	22.2	15.8	21.9
imary exchanger pressure drop	MED	Кра	13.1	16.1	20.2	13.5	18.5
	MIN	Кра	7.8	14.0	17.1	11.1	15.2
	MAX	kW	4.22	7.80	8.81	15.35	17.99
changer thermal power (2)	MED	kW	3.81	7.62	8.40	14.34	16.58
	MIN	kW	2.99	7.06	7.76	13.05	0 50 7 36 33 3989 95 3453 12 2946 52 17.38 34 15.88 97 14.23 11 12.19 32 11.03 40 9.85 91 2982 89 2720 54 2441 .8 21.9 .5 18.5 .1 15.2 35 17.99 34 16.53 05 15.10 48 1580 60 1456 46 1326 9 11.9 8 70 9 76 7 73 4 69 19 914 36 814 30 70 9 76 7 73 4 69
	MAX	l/h	371	685	774	1348	1580
changer water flow	MED	l/h	335	669	738	1260	1456
	MIN	l/h	262	620	681	1146	1326
	MAX	Кра	4.9	6.8	8.5	8.9	11.9
changer pressure drop	MED	Кра	4.1	6.5	7.8	7.8	10.2
	MIN	Кра	2.6	5.6	6.7	6.5	8.6
	MAX	dB(A)	65	69	70	70	77
und power, intake + radiation	MED	dB(A)	60	68	67	68	74
	MIN	dB(A)	51	64	65	65	70
	MAX	dB(A)	64	68	69	69	76
ound power delivered	MED	dB(A)	59	67	66	67	73
	MIN	dB(A)	50	63	64	64	69
	MAX	W	150	225	303	549	914
sorbed power	MED	W	129	191	258	486	814
	MIN	W	70	168	233	402	620
aximum motor electric absorption		А	0.8	1.3	1.6	2.5	4.5
	MAX	dB(A)	56	60	61	61	68
ound pressure level, intake + radiation (3)	MED	dB(A)	51	59	58	59	65
	MIN	dB(A)	42	55	56	56	61
	MAX	dB(A)	55	59	60	60	67
und pressure level delivered	MED	dB(A)	50	58	57	58	64
	MIN	dB(A)	41	54	55	55	60
					 V-50Hz single-ph		
ectric heater		kW	2.5	4.5	4.5	6.0	6.0
mbing connections			3/4"	3/4"	3/4"	1"	1"

^{(2) - 2-}pipe plant: Hot: T. Ambient: 20 °C - T. water (in/out): 50 °C - same cooling water flow rate

Note: Other sizes with optional coil (81 a 3+1; 21/31/38/41/81 a 4+1, 3+2, 4+2 rows) are available on the selection program. The data shown refers to Soffio single panel version.

INDUSTRIAL MO

CONTROL SYSTEMS

ACCESSORIES

^{- 4-}pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 70/60° C

 ⁽³⁾ Sound pressure levels are lower than power levels of 9 dB (A) for an environment of 100 m³ with reverberation time of 0.5 seconds

 $^{{}^{*}}$ Size 81 outperforms the maximum values envisaged by the Eurovent program for ducted FCUs

HACI **H-HP 70** Ducted Medium Pressure with **DC** Motor, Technical Data

HP 70 DC motors			21	38	41	81*
ROWS			3	3	3	3
2-PIPE PLANT						
	MAX	Pa	85	81	72	74
Useful air prevalence	MED	Pa	50	50	50	50
	MIN	Pa	17	17	22	19
	MAX	m³/h	1017	2037	3300	4058
Airflow	MED	m³/h	779	1605	2758	3355
	MIN	m³/h	454	926	1770	2011
	MAX	kW	4.49	8.86	15.39	17.62
Total cooling power (1)	MED	kW	3.73	7.57	13.57	15.54
	MIN	kW	2.51	5.08	9.81	10.79
	MAX	kW	3.16	6.13	10.72	12.31
Sensitive cooling power	MED	kW	2.64	5.25	9.49	10.83
	MIN	kW	1.80	3.60	6.94	7.62
	MAX	l/h	770	1520	2640	3023
exchanger water flow	MED	l/h	640	1298	2329	2666
5	MIN	l/h	431	827	1683	1852
	MAX	Кра	20	24	18	23
Primary exchanger pressure drop	MED	Кра	14	18	14	18
······································	MIN	Кра	7	9	8	10
	MAX	kW	6.02	11.77	20.30	23.46
exchanger thermal power (2)	MED	kW	4.97	9.97	17.82	20.54
	MIN	kW	3.31	6.63	12.78	14.09
	MAX	l/h	770	1520	2640	3023
Exchanger water flow	MED	l/h	640	1298	2329	2666
hanger water flow	MIN	l/h	431	827	1683	1852
	MAX	Kpa	18	21	15	19
Exchanger pressure drop	MED	Кра	13	15	12	16
	MIN	Кра	6	8	7	8
	MAX	dB(A)	70	71	75	79
Sound power, intake + radiation	MED				72	75
·		dB(A)	65	68		
	MIN	dB(A)	53	57	64	65
	MAX	dB(A)	69	70	74	78
Sound power delivered	MED	dB(A)	64	67	71	74
	MIN	dB(A)	52	56	63	64
	MAX	W	165	320	475	770
Absorbed power	MED	W	95	165	295	435
	MIN	W	25	45	95	115
Maximum motor electric absorption		Α	1.80	2.30	2.60	4.2
CEER-COOLING CLASS			С	В	В	С
CCOP-HEATING CLASS			В	A	А	В
	MAX	dB(A)	61	62	66	70
Sound pressure level, intake + radiation (3)	MED	dB(A)	56	59	63	66
	MIN	dB(A)	44	48	55	56
	MAX	dB(A)	60	61	65	69
Sound pressure level delivered	MED	dB(A)	55	58	62	65
	MIN	dB(A)	43	47	54	55
Electric heater		kW	230V-50H	z single-phase	400V-50H	lz tri-phase
		IX V V	2.5	6.0	9.0	9.0
Plumbing connections			3/4"	3/4"	1"	1"

Note: Other sizes with optional coil (81 a 3+1; 21/31/38/41/81 a 4+1, 3+2, 4+2rows) are available on the selection program. The data shown refers to Soffio single panel version.

NOTE FOR DC MOTORS: Max= 10 Volt - Med= 7 Volt - Min= 3 Volt

 $[\]begin{tabular}{ll} (1) & Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): $7/12^{\circ}$ C \\ (2) & - 2-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 50° C - same cooling \\ \end{tabular}$ water flow rate

^{- 4-}pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 70/60° C (3) Sound pressure levels are lower than power levels of 9 dB (A) for an environment of 100 $\mathrm{m^3}$ with reverberation time of 0.5 seconds

 $^{^{*}}$ * Size 81 outperforms the maximum values envisaged by the Eurovent program for ducted FCUs

HP 70 DC motors			21	38	41	81*
ADDITIONAL COIL			3+1	3+1	3+1	3+1
I-PIPE PLANT						
	MAX	Pa	85	81	72	74
seful air prevalence	MED	Pa	50	50	50	50
	MIN	Pa	17	17	22	19
	MAX	m³/h	971	1973	3183	3947
irflow	MED	m³/h	742	1524	2669	3265
	MIN	m³/h	436	893	1702	1947
	MAX	kW	4.35	8.68	14.99	17.36
otal cooling power (1)	MED	kW	3.58	7.29	13.26	15.25
	MIN	kW	2.41	4.94	9.53	10.56
	MAX	kW	3.05	6.04	10.42	12.07
ensitive cooling power	MED	kW	2.55	5.08	9.25	10.65
	MIN	kW	1.75	3.49	6.74	7.45
	MAX	l/h	746	1490	2573	2979
cchanger water flow	MED	l/h	614	1252	2275	2616
	MIN	l/h	414	848	1635	1813
	MAX	Кра	19	23	17	22
imary exchanger pressure drop	MED	Кра	13	17	14	17
, , , ,	MIN	Кра	6	8	7	9
	MAX	kW	4.54	8.83	15.80	17.93
schanger thermal power (2)	MED	kW	3.58	7.61	14.20	15.99
	MIN	kW	2.77	5.56	10.82	11.75
	MAX	l/h	399	776	1388	1574
changer water flow	MED	l/h	338	669	1247	1405
hanger water flow	MIN	l/h	244	488	950	1032
	MAX	Кра	6	9	10	12
changer pressure drop	MED	Кра	4	7	8	10
	MIN	Кра	2	4	5	6
	MAX	dB(A)	70	71	75	79
ound power, intake + radiation	MED	dB(A)	65	68	72	75
Jana perior, intante i dalation	MIN	dB(A)	53	57	64	65
	MAX	dB(A)	69	70	74	78
ound power delivered	MED	dB(A)	64	67	71	74
ound power delivered	MIN	dB(A)	52	56	63	64
	MAX	W W	165	320	475	770
bsorbed power	MED	W	95	165	295	435
223. 234 porto.	MIN	W	25	45	95	115
aximum motor electric absorption	1 111 4	A	1.80	2.30	2.60	4.20
CEER-COOLING CLASS		7	C	2.30 B	2.00 B	4.20 C
CCOP-HEATING CLASS			В	В	В	С
COO. FILATING CLASS	MAX	dB(A)	61	62	66	70
ound pressure level, intake + radiation (3)	MED	dB(A)	56	59	63	66
vana pressure ievel, iritake + (duidtion (5)	MIN	dB(A)		48	55	56
			60			69
ound proceure lovel delivered	MAX	dB(A)	60	61	65	
ound pressure level delivered	MED	dB(A)	55	58	62	65
	MIN	dB(A)	43	47	54	55
ectric heater		kW		single-phase	400V-50H	
			2.5	6.0	9.0	9.0

NOTE FOR DC MOTORS: Max= 10 Volt - Med= 7 Volt - Min= 3 Volt

⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
(2) -2-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 50° C - same cooling water flow rate

^{- 4-}pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 70/60° C

⁽³⁾ Sound pressure levels are lower than power levels of 9 dB (A) for an environment of $100\,\text{m}^3$ with reverberation time of $0.5\,\text{seconds}$

Note: Other sizes with optional coil (81 a 3+1; 21/31/38/41/81 a 4+1, 3+2, 4+2rows) are available on the selection program. The data shown refers to Soffio $\,$ single panel version.

 $^{^{*}}$ * Size 81 outperforms the maximum values envisaged by the Eurovent program for ducted FCUs

HACI **H-HP 150** Duct High Pressure with **AC** Motor, Technical Data

HP 150 AC motors				21			38			81		9	1	10	01
ROWS			3	4	6	3	4	6	3	4	6	4	6	4	6
2-PIPE PLANT															
	MAX	Pa	150	150	150	150	150	150	150	150	150	150	150	150	150
Useful air prevalence	MED	Pa	100	100	100	115	115	115	89	89	89	85	85	89	89
	MIN	Pa	60	60	60	74	74	74	35	35	35	35	35	35	35
	MAX	m³/h	1231	1231	1231	2200	2200	2200	4085	4085	4085	4943	4943	6081	6081
Airflow	MED	m³/h	1009	1009	1009	1927	1927	1927	3133	3133	3133	3733	3733	4701	4701
	MIN	m³/h	797	797	797	1544	1544	1544	2001	2001	2001	2372	2372	2996	2996
	MAX	kW	5.09	6.08	7.71	9.32	11.02	14.16	17.77	20.85	27.19	25.96	33.57	32.26	41.79
Total cooling power (1)	MED	kW	4.45	5.27	6.58	8.53	10.04	12.77	14.83	17.24	22.01	21.08	26.55	26.76	33.87
	MIN	kW	3.81	4.42	5.44	7.33	8.57	10.66	10.75	12.15	15.1	14.78	18.49	18.95	23.32
	MAX	kW	3.56	4.32	5.44	6.47	7.76	9.86	12.29	14.84	18.76	18.34	23.87	22.35	29.18
Sensitive cooling power	MED	kW	3.13	3.75	4.70	5.93	7.06	8.92	10.33	12.25	15.25	15.02	19.07	18.63	23.78
	MIN	kW	2.67	3.16	3.89	5.13	6.06	7.50	7.61	8.81	10.63	10.66	12.92	13.37	16.31
	MAX	l/h	874	1043	1323	1598	1891	2429	3049	3578	4666	4455	5759	5535	7170
Exchanger water flow	MED	l/h	764	905	1129	1464	1723	2191	2544	2958	3776	3618	4556	4591	5812
	MIN	l/h	654	758	933	1257	1470	1828	1845	2085	2590	2536	3172	3251	4002
	MAX	Кра	25.3	20.6	24.4	25.8	19.0	30.1	22.8	16.6	38	15.8	18.4	26.2	30.5
Primary exchanger pressure drop	MED	Кра	19.7	15.8	18.2	22.0	16.0	24.9	16.4	11.7	25.9	10.8	12.0	18.7	20.8
	MIN	Кра	14.7	11.4	12.8	16.6	11.9	17.9	9.2	6.2	13.1	5.7	6.2	10.0	10.6
	MAX	kW	6.85	8.05	9.77	12.41	14.55	17.68	23.58	27.51	33.42	34.04	41.88	41.64	51.36
Exchanger thermal power (2)	MED	kW	5.97	6.96	8.31	11.33	13.20	15.87	19.55	22.54	26.79	27.47	32.91	34.27	41.23
	MIN	kW	5.06	5.81	6.82	9.68	11.15	13.17	14.05	15.82	18.14	19.11	22.00	23.98	27.68
	MAX	l/h	874	1043	1323	1598	1891	2429	3049	3578	4666	4455	5759	5535	7170
Exchanger water flow	MED	l/h	764	905	1129	1464	1723	2191	2544	2958	3776	3618	4556	4591	5812
	MIN	l/h	654	758	933	1257	1470	1828	1845	2085	2590	2536	3172	3251	4002
	MAX	Кра	22.0	17.9	21.2	22.1	16.2	25.5	19.3	14.0	31.8	13.3	15.5	22.0	25.6
Exchanger pressure drop	MED	Кра	17.1	13.7	15.7	18.8	13.6	21.1	13.8	9.9	21.6	9.1	10.1	15.6	17.5
	MIN	Кра	12.8	9.8	11.0	14.2	10.2	15.1	7.7	5.2	10.9	4.8	5.2	8.3	8.8
	MAX	dB(A)	66	66	67	70	70	70	79	79	79	80	80	81	81
Sound power, intake + radiation	MED	dB(A)	63	63	62	67	67	67	74	74	74	75	75	76	76
	MIN	dB(A)	61	61	53	65	65	65	64	64	64	65	65	66	66
	MAX	dB(A)	65	65	65	69	69	69	78	78	78	79	79	80	80
Sound power delivered	MED	dB(A)	62	62	61	66	66	66	73	73	73	74	74	75	75
	MIN	dB(A)	60	60	52	64	64	64	63	63	63	64	64	65	65
	MAX	W	240	240	240	480	480	480	970	970	970	1180	1180	1440	1440
Absorbed power	MED	W	195	195	195	390	390	390	770	770	770	900	900	1150	1150
	MIN	W	150	150	150	300	300	300	620	620	620	650	650	930	930
Maximum motor electric absorption	n	А	2	2	2	4	4	4	8	8	8	8	8	12	12
	MAX	dB(A)	57	57	57	61	61	61	70	70	70	71	71	72	72
Sound pressure level Intake + radiation (3)	MED	dB(A)	54	54	54	58	58	58	65	65	65	66	66	67	67
	MIN	dB(A)	52	52	52	56	56	56	55	55	55	56	56	57	57
	MAX	dB(A)	56	56	56	60	60	60	69	69	69	70	70	71	71
Sound pressure level delivered	MED	dB(A)	53	53	53	57	57	57	64	64	64	65	65	66	66
	MIN	dB(A)	51	51	51	55	55	55	54	54	54	55	55	56	56
Floatrichester		LAM				230V-50)Hz sing	le-phase)			230	V-50Hz	single-p	hase
Electric heater		kW		2.5				4	.5			6.0			
Plumbing connections				3/4"				3/	4"				1	L"	

The data shown refers to HP single panel version.

⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
(2) - 2-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 50° C - same cooling water flow rate
- 4-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 70/60° C

 $^{(3) \}quad \text{Sound pressure levels are lower than power levels of 9 dB (A) for an environment of 100 m}^3 \text{ with reverberation time of 0.5 seconds}$

										101
			3+2	4+2	3+2	4+2	3+2	4+2	4+2	4+2
4-PIPE PLAN I	NAAN/	_	150	450	4.50	450	450	150	150	150
										150
Usetul air prevalence										90
										35
										6019
xchanger water flow rimary exchanger pressure drop xchanger thermal power (2) xchanger water flow xchanger pressure drop ound power, intake + radiation ound power delivered bsorbed power										4678
										2992
										31.98
Total cooling power (1)				5.21		9.72		17.22		26.69
				4.36		8.36		12.15		18.92
	MAX	kW	3.45	4.14	6.16	7.33	12.28	14.70	18.22	22.23
Sensitive cooling power	MED	kW	3.09	3.69	5.75	6.83	10.32	12.23	14.97	18.57
pipe PLANT eful air prevalence flow tal cooling power (1) nsitive cooling power changer water flow mary exchanger pressure drop changer thermal power (2) changer water flow changer pressure drop und power, intake + radiation und power delivered sorbed power eximum motor electric absorption und pressure level ake + radiation (3) und pressure level delivered	MIN	kW	2.66	3.15	5.01	5.94	7.61	8.82	10.66	13.36
	MAX	4435	5488							
Exchanger water flow	MED	l/h	752	894	1416	1668	2541	2954	3606	4579
	MIN	l/h	645	748	1234	1435	1846	2085	2518	3247
	MAX	Кра	23.8	19.3	23.2	17.0	22.4	16.5	15.7	25.8
Primary exchanger pressure drop	MED	Кра	19.1	15.4	20.7	15.1	16.4	11.7	10.8	18.6
	MIN	MAX Pa 150 150 150 150 150 150 150 150 150 150	10.0							
changer thermal power (2)	MAX	kW	8.59	8.59	15.17	15.17	30.33	30.33	38.41	46.48
Exchanger thermal power (2)	MED	kW	7.70	7.70	14.27	14.27	25.69	25.69	31.96	39.46
	MIN	kW	6.62	6.62	12.47	12.47	18.97	18.97	86 99 35 35 34902 60 3717 46 2362 29 25.85 31 21.01 26 14.68 18 18.22 22 14.97 18 10.66 13 4435 54 3606 45 2518 32 15.7 25 10.8 18 5.6 10 38.41 46 31.96 39 23.41 29 3374 40 2807 34 2056 25 18.1 28 12.9 20 7.3 11 80 8 75 7 65 66 79 88 77 7 64 66 1180 14 900 11 650 99 8 1 71 7 66 66 55 55 400V-50Hz tri-pl	29.08
Exchanger water flow	MAX	l/h	754	754	1332	1332	2664	2664	3374	4082
	MED	l/h	676	676	1253	1253	2256	2256	2807	3466
	MIN	l/h	581	581	1096	1096	1666	1666	2056	2554
	MAX	Кра	11.2	11.2	11.1	11.1	8.7	8.7	18.1	28.2
Exchanger pressure drop	MED	Кра	9.1	9.1	9.9	9.9	6.4	6.4	150 86 35 4902 3717 2362 25.85 21.01 14.68 18.22 14.97 10.66 4435 3606 2518 15.7 10.8 5.6 38.41 31.96 23.41 3374 2807 2056 18.1 12.9 7.3 80 75 65 79 47 64 1180 900 650 8 71 66 56 70 65 55 400V-50Hz	20.9
	MIN	Pa	11.9							
	MAX	dB(A)	66	66	70	70	79	79	80	81
changer water flow mary exchanger pressure drop changer thermal power (2) changer water flow changer pressure drop und power, intake + radiation und power delivered sorbed power eximum motor electric absorption und pressure level ake + radiation (3) und pressure level delivered	MED		63	63	67	67	74	74	75	76
•	MIN	dB(A)	61	61	65	65	64	64	65	66
										80
Sound power delivered	MED									75
•										65
										1440
Absorbed power										1150
										930
Maximum motor electric absorption										12
										72
Sound pressure level										67
Intake + radiation (3)										57
										71
Cound process to let all delicers										
Sound pressure level delivered									31.96 23.41 3374 2807 2056 18.1 12.9 7.3 80 75 65 79 47 64 1180 900 650 8 71 66 56 70 65 55 400V-50Hztt	66
	MIN	dB(A)	51	1 15.4 20.7 15.1 14.4 11.1 16.1 11.4 16.1 11.4 16.1 11.4 16.1 11.4 16.1 11.4 16.1 11.4 16.1 11.4 16.1 11.4 16.1 11.4 16.1 11.4 17.7 16.6 12.47 12.47 12.47 13.32 1			54		56	
Electric heater		kW							400V-50Hz tri-phas	
Plumbing connections			3/	4"	3/	/4"		1"	1" 1/4	

The data shown refers to HP single panel version.

HP 150 AC motors

 ⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
 (2) - 2-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 50 °C - same cooling water flow rate - 4-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 70/60° C

 $^{(3) \}quad \text{Sound pressure levels are lower than power levels of 9 dB (A) for an environment of 100 m}^3 \text{ with reverberation time of 0.5 seconds}$

HACI **H-HP 150** Duct High Pressure with **DC** Motor, Technical Data

HP 150 DC motors				21			38			81		9	1	10	01
MODELS			3	4	6	3	4	6	3	4	6	4	6	4	6
2-PIPE PLANT															
	MAX	Pa	200	200	200	210	210	210	400	400	400	360	360	380	380
Useful air prevalence	MED	Pa	70	70	70	72	72	72	115	115	115	104	104	109	109
	MIN	Pa	23	23	23	23	23	23	37	37	37	33	33	34	34
	MAX	m³/h	1263	1263	1263	2193	2193	2193	4076	4076	4076	4970	4970	6349	6349
Airflow	MED	m³/h	751	751	751	1322	1322	1322	2214	2214	2214	2676	2676	3376	3376
	MIN	m³/h	429	429	429	764	764	764	1259	1259	1259	1499	1499	1918	1918
	MAX	kW	5.2	6.2	7.9	9.3	11.0	14.1	17.7	20.8	27.1	26.1	33.7	33.3	43.2
Total cooling power (1)	MED	kW	3.6	4.2	5.1	6.6	7.6	9.4	11.6	13.2	16.4	16.3	20.3	20.8	25.6
	MIN	kW	2.4	2.7	3.3	4.4	4.8	6.0	7.5	8.0	10.3	9.9	12.6	13.1	16.2
	MAX	kW	3.6	4.4	5.6	6.4	7.8	9.8	12.3	14.8	18.7	18.8	24.0	23.1	30.2
Sensitive cooling power	MED	kW	2.6	3.0	3.7	4.6	5.4	6.6	8.1	9.5	11.5	11.7	14.4	14.6	18.1
	MIN	kW	1.7	2.0	2.3	3.1	3.6	4.2	5.4	6.1	7.1	7.4	8.6	9.4	11.0
	MAX	l/h	888	1064	1349	1594	1886	2422	3042	3569	4655	4476	5787	5711	7413
Exchanger water flow	MED	l/h	622	726	881	1130	1302	1607	1989	2260	2823	2792	3492	3567	4395
	MIN	l/h	413	457	560	752	829	1023	1292	1390	1770	1695	2163	2245	2776
	MAX	Кра	26.0	21.3	25.3	25.7	18.9	29.9	22.7	16.5	37.9	16.0	18.6	27.7	32.4
Primary exchanger pressure drop	MED	Кра	13.4	10.5	11.5	13.7	9.6	14.1	10.5	7.2	15.3	6.8	7.4	11.8	12.5
	MIN	Кра	6.3	4.5	5.0	6.5	4.2	6.2	4.8	3.0	6.6	2.8	3.1	5.1	5.5
	MAX	kW	7.00	8.20	10.00	12.40	14.50	17.60	23.50	27.40	33.40	34.20	42.10	43.00	53.30
Exchanger thermal power (2)	MED	kW	4.80	5.60	6.50	8.60	9.90	11.55	15.20	17.10	19.80	21.10	24.50	26.40	30.80
exchanger thermal power (2)	MIN	kW	3.20	3.50	4.00	5.70	6.30	7.10	9.80	10.70	11.90	13.00	14.40	16.00	18.40
	MAX	l/h	888	1064	1349	1594	1886	2422	3042	3569	4655	4476	5787	5711	7413
Exchanger water flow	MED	l/h	622	726	881	1130	1302	1607	1989	2260	2823	2792	3492	3567	4395
	MIN	l/h	413	457	560	752	829	1023	1292	1390	1770	1695	2163	2245	2776
	MAX	Кра	22.70	18.50	21.90	22.00	16.10	25.40	19.20	13.90	31.70	13.50	15.70	23.30	27.30
Exchanger pressure drop	MED	Кра	11.60	9.10	9.90	11.60	8.10	11.90	8.80	6.00	12.70	5.70	6.20	9.90	10.50
	MIN	Кра	5.40	3.80	4.30	5.50	3.50	5.20	4.00	2.50	5.40	2.30	2.60	4.20	4.50
	MAX	dB(A)	69	69	69	73	73	73	83	83	83	84	84	85	85
Sound power, intake + radiation	MED	dB(A)	61	61	61	65	65	65	65	65	65	66	66	67	67
	MIN	dB(A)	58	58	58	62	62	62	62	62	62	63	63	64	64
	MAX	dB(A)	68	68	68	72	72	72	82	82	82	83	83	84	84
Sound power delivered	MED	dB(A)	50	50	50	64	64	64	64	64	64	65	65	66	66
	MIN	dB(A)	57	57	57	61	61	61	61	61	61	62	62	63	63
	MAX	W	114	114	114	228	228	228	633	633	633	633	633	949	949
Absorbed power	MED	W	38	38	38	76	76	76	144	144	144	144	144	216	216
	MIN	W	24	24	24	48	48	48/1.8	53	53	53	53	53	80	80
Maximum motor electric absorption	า	А	0.90	0.90	0.90	1.80	1.80	1.80	5.0	5.0	5.0	5.0	5.0	7.5	7.5
	MAX	dB(A)	60	60	60	64	64	64	74	74	74	75	75	76	76
Sound pressure level Intake + radiation (3)	MED	dB(A)	52	52	52	56	56	56	56	56	56	57	57	58	58
	MIN	dB(A)	49	49	49	53	53	53	53	53	53	54	54	55	55
	MAX	dB(A)	59	59	59	63	63	63	73	73	73	74	74	75	75
Sound pressure level delivered	MED	dB(A)	51	51	51	55	55	55	55	55	55	56	56	57	57
	MIN	dB(A)	48	48	48	52	52	52	52	52	52	53	53	54	54
El a cala de		1347				230V-50)Hz sing	le-phase				400V-50Hz single-phase			
Electric heater		kW		2.5			4.5			6.0		9.0			
Plumbing connections				3/4"			3/4"			1"			1 1	/4"	

The data shown refers to HP single panel version.

NOTE FOR DC MOTORS: Max= 10 Volt - Med= 7 Volt - Min= 3 Volt

⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
(2) - 2-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 50 ° C - same cooling water flow rate

 ⁴⁻pipe plant: Hot: T. Ambient: 20 °C - T. water (in/out): 70/60° C
 Sound pressure levels are lower than power levels of 9 dB (A) for an environment of 100 m³ with reverberation time of 0.5 seconds

HP 150 DC motors			21		38		81		91	101
ADDITIONAL COIL			3+2	4+2	3+2	4+2	3+2	4+2	4+2	4+2
4-PIPE PLANT										
	MAX	Pa	200	200	210	210	400	400	360	380
Jseful air prevalence	MED	Pa	70	70	72	72	115	115	104	109
•	MIN	Pa	23	23	23	23	37	37	33	34
	MAX	m³/h	1263	1263	2193	2193	4076	4076	4970	6349
Airflow	MED	m³/h	751	751	1322	1322	2214	2214	2676	3376
	MIN	m³/h	429	429	764	764	1259	1259	1499	1918
	MAX	kW	5.2	6.2	9.3	11	17.7	20.8	26.1	33.3
Γotal cooling power (1)	MED	kW	3.6	4.2	6.6	7.6	11.6	13.2	16.3	20.8
otal cooling power (1)	MIN	kW	2.4	2.7	4.4	4.8	7.0	8.1	9.9	13.1
	MAX	kW	3.6	4.4	6.0	7.8	12.0	14.8	18.8	23.1
`anaiting analing names		kW								
Sensitive cooling power	MED		2.6	3.0	5.0	5.4	8.0	9.5	11.7	14.6
	MIN	kW	1.7	2.0	3.0	3.6	5.0	6.1	7.4	9.4
	MAX	l/h	888	1064	1594	1886	3042	3569	4476	51711
exchanger water flow	MED	l/h	622	726	1130	1302	1989	2260	2792	3567
	MIN	l/h	413	457	752	829	1292	1390	1695	2245
	MAX	Кра	26.0	21.3	26.0	18.9	23.0	16.5	16.0	27.7
Primary exchanger pressure drop	MED	Кра	13.4	10.5	14.0	9.6	11.0	7.2	6.8	11.8
	MIN	Кра	6.3	4.5	7.0	4.2	5.0	3.0	2.8	5.1
	MAX	kW	9.0	9.0	16.0	16.0	31.0	30.5	38.7	48.1
Exchanger thermal power (2)	MED	kW	6.4	6.4	12.0	11.5	20.0	20.3	25.6	31.6
	MIN	kW	4.3	4.3	8.0	7.8	14.0	13.6	16.8	21.1
	MAX	l/h	792	792	1406	1406	2683	2683	3399	4225
Exchanger water flow	MED	l/h	565	565	1009	1009	1785	1785	2246	2775
	MIN	l/h	381	381	688	688	1198	1198	1480	1856
	MAX	Кра	12.3	12.3	12.0	12.3	9.0	8.8	18.4	30.1
Exchanger pressure drop	MED	Кра	6.5	6.5	7.0	6.6	4.0	4.1	8.5	13.9
	MIN	Кра	3.1	3.1	3.0	3,2	2.0	2.0	4.0	6.6
	MAX	dB(A)	69	69	73	73	83	83	84	85
Sound power, intake + radiation	MED	dB(A)	61	61	65	65	65	65	66	67
	MIN	dB(A)	58	58	62	62	62	62	63	64
	MAX	dB(A)	68	68	72	72	82	82	83	84
Sound power delivered	MED	dB(A)	50	60	64	64	64	64	65	66
	MIN	dB(A)	57	57	61	61	61	61	62	63
	MAX	W	114	114	228	228	633	633	633	949
Absorbed power	MED	W	38	38	76	76	144	144	144	216
•	MIN	W	24	24	48	48	53	53	53	80
Maximum motor electric absorption		Α	0.9	0.9	1.8	1.8	5.0	5.0	5.0	7.5
	MAX	dB(A)	60	60	64	64	74	74	75	76
Sound pressure level	MED	dB(A)	52	52	56	56	56	56	57	58
ntake + radiation (3)	MIN	dB(A)	49	49	53	53	53	53	54	55
	MAX	dB(A)	59	59	63	63	73	73	74	75
Sound pressure level delivered	MED	dB(A)	59	59	55	55	55	55	56	57
oouna pressure level delivered										
	MIN	dB(A)	48	48	52	52	52	52	53	54
Electric heater kW Plumbing connections		kW		-	230V-50Hz			0	400V-50H	•
		2.5 4.5 3/4" 3/4"			6.0		9.0			

⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
(2) - 2-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 50 °C - same cooling

The data shown refers to HP single panel version.

NOTE FOR DC MOTORS: Max= 10 Volt - Med= 7 Volt - Min= 3 Volt

water flow rate

^{- 4-}pipe plant: Hot: T. Ambient: 20 °C - T. water (in/out): 70/60° C

(3) Sound pressure levels are lower than power levels of 9 dB (A) for an environment of 100 m³ with reverberation time of 0.5 seconds

HYDRONIC TERMINALS HACI H-LNH Duct Super Silent

H-LNH

Ducted super silent, ideal for hotels, homes, hospitals and prestigious

INTRODUCTION

H-LNH has been designed to provide maximum energy comfort and maximum silence, which are difficult to obtain with other traditional air conditioning units (split, fan coils). The minimum noise level is 18 dB (A) (version with DC motor). Its performance makes it the ideal product for installations that require compliance with strict acoustic standards. Extremely silent thanks to its technical solutions: the careful study of an integrated silencer plenum of the entire machine body which is isolated with an insulating material with high sound-absorbing power.

 $\textbf{LNH} \ \text{is designed for maximum comfort during maintenance:} \\$ the fan, like the main tray and the coil can be inspected and removed with the same procedure. **LNH** is available with AC and DC motors.

Natural condensate drain, pump-free.

As standard, it is supplied with connections on the right; reversible during installation; otherwise specify connections on the left when ordering.

Dimensions

SIZE	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	Weight (kg)
3	660	250	850	525	475	23
6	860	250	850	785	735	33
8	1120	250	850	1045	995	41
12	1120	250	850	1045	995	43

A = length mm B = height mm C = depth mm

H-LNH				AC motor,	2-pipe plan	t		DC motor,	2-pipe plan	t
n-LNn			3	6	8	12	3	6	8	12
ROWS			4	4	4	4	4	4	4	4
	MAX	m³/h	343	547	784	1255	359	535	850	1004
Airflow	MED	m³/h	239	468	675	1102	251	346	538	624
	MIN	m³/h	203	327	413	696	187	259	304	372
	MAX	kW	2.11	3.21	4.88	6.95	2.20	3.14	5.21	5.90
Total cooling power (1)	MED	kW	1.88	2.79	4.35	6.32	1.64	2.12	3.61	4.08
	MIN	kW	1.37	2.04	2.89	4.46	1.27	1.68	2.23	2.61
	MAX	kW	1.50	2.35	3.41	4.82	1.55	2.33	3.64	4.11
Sensitive cooling power	MED	kW	1.33	2.09	3.05	4.37	1.18	1.65	2.56	2.87
-	MIN	kW	1.00	1.57	2.08	3.12	0.93	1.27	1.60	1.90
	MAX	l/h	362	550	837	1193	378	588	894	1012
Exchanger water flow	MED	l/h	322	479	746	1084	282	364	619	699
and the second s	MIN	l/h	235	351	495	765	218	289	383	448
	MAX	Кра	12.9	5.6	15.0	28.7	13.9	5.4	16.9	21.2
Primary exchanger pressure drop	MED	Кра	10.4	4.4	12.1	24.1	8.1	2.7	8.7	10.8
ary exertainger pressure thop	MIN	Кра	5.8	2.5	5.8	12.7	5.1	1.8	3.7	4.8
	MAX	kW	2.70	4.25	6.17	8.89	2.80	4.16	6.57	7.49
Exchanger thermal power (2)	MED	kW	2.70	3.74	5.45	8.07	2.80	2.89	4.52	5.11
	MIN	kW	1.75	2.76	3.61	5.60	1.62	2.26	2.76	3.29
	MAX	I/h	362	550	837	1193	378	538	894	1012
Exchanger water flow	MED	l/h	322	479	746	1084	282	364	619	699
	MIN	l/h	235	351	495	765	218	289	383	448
	MAX	Кра	11.2	4.8	12.7	24.4	12.1	4.6	14.3	18.0
Exchanger pressure drop	MED	Кра	9.0	3.7	10.3	20.4	7.0	2.2	7.3	9.1
	MIN	Кра	5.0	2.1	4.8	10.8	4.4	1.5	3.0	4.0
	MAX	kW	1.96	3.12	4.48	5.86	2.05	3.05	4.47	5.21
additional exchanger thermal power	MED	kW	1.83	2.79	4.20	5.43	1.63	2.33	3.56	3.88
	MIN	kW	1.42	2.25	3.00	4.16	1.36	1.95	2.45	2.80
	MAX	l/h	172	274	393	515	180	268	417	458
Additional exchanger water flow	MED	l/h	160	245	362	477	143	205	313	341
	MIN	l/h	125	198	26	365	119	172	215	246
Additional exchanger pressure drop	MAX	Кра	5.5	2.7	6.2	10.3	6.0	2.6	6.9	8.2
	MED	Кра	4.8	2.2	5.3	8.9	3.9	1.5	4.1	4.8
	MIN	Кра	3.0	1.4	3.0	5.4	2.8	1.1	2.0	2.6
ound power	MAX	dB(A)	43	45	47	55	46	48	52	56
	MED	dB(A)	39	41	43	53	36	37	38	45
	MIN	dB(A)	30	32	33	43	27	29	27	32
Absorbed power	MAX	W	33	53	85	137	14	19	35	58
	MED	W	27	41	43	118	7	9	12	19
	MIN	W	16	24	33	61	5	7	7	8
faximum motor electric absorption		А	0.15	0.24	0.37	0.66	0.12	0.15	0.25	0.41
CEER-COOLING CLASS			-	-	-	-	236 A	230 A	282 A	233 A
CCOP-HEATING CLASS 2T			-	-	-	-	302 A	310 A	351 A	298 A
FCCOP-HEATING CLASS 4T			-	-	-	-	246 B	259 B	259 B	241 B
	MAX	dB(A)	34	36	38	46	37	39	43	47
Sound pressure level (3)	MED	dB(A)	30	32	34	44	27	28	29	36
	MIN	dB(A)	21	23	24	34	18	20	18	23
			1/2"	1/2"	1/2"	1/2"	1/2"	1/2"		

NOTES FOR DC MOTORS

Speed data under the following conditions:
Size 3-6: Max = 8.5 Volt - Med = 4.5 Volt - Min = 2.5 Volt
Size 8: Max = 9 Volt - Med = 4.5 Volt - Min= 2.5 Volt Size 12: Max = 8.5 Volt - Med = 4.5 Volt - Min = 2 Volt

 ⁽¹⁾ Cold: T. Ambient: 27° C - DB - 19° C - T. water (in/out): 7/12° C
 (2) - 2-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 50° C - same cooling water flow rate - 4-pipe plant: Hot: T. Ambient: 20° C - T. water (in/out): 70/60° C

 $^{(3) \ \} Sound \ pressure \ levels \ are \ lower \ than \ power \ levels \ of \ 9 \ dB \ (A) \ for \ an \ environment \ of \ 100 \ m^3 \ with \ reverberation \ time \ of \ 0.5 \ seconds$

H-SHS

"Smart Hotel Solution"

Ducted super silent, pre-assembled in a casing already complete with grid. Space saving solution.

INTRODUCTION

H-SHS belongs to the family of silence hydronic fan coils (20 dB (A) DC motor). It was developed for environments where built-in installations take place in confined spaces such as hotels.

It is possible to install them in the corridors, to get flush with the entrance door only with the grid, avoiding the classic lowering above the door in the room.

SHS has a single grid for the delivery and intake of ambient air specially designed to avoid short air circuits and does not require to be equipped with an inspection hatch.

Accessibility to the unit takes place by removing the front grill. The special chamber where the core of the fan coil resides, slides on rails which, once fixed on site, allow SHS to slide easily into the technical compartment: this specific construction leaves the ceiling free and allows the installation of lighting fixtures.

The version with DC motor guarantees even more optimal performance and comfort.

Being extremely quiet and easy to install, this version is also ideal for renovations.

H-SHS

ROWS

DC motor

4-pipe plant

634

4

320

4

2-pipe plant

634

320

4

CHILLER

	125	250	500	1000	2000	4000	8000	125	250	500	1000	2000	4000	8000
			:	SHS 320 AC							SHS 320 D	С		
					oct	TAVE BAND) dB (input	+ output + r	adiated)					
Electric heater				1/	2"	1/	2"	1,	/2"	1/	'2"			
Electric heater			W	1000	1250	1000	1250	1000	1250	1000	1250			
Maximum motor electric absorption			А	0.25	0.35	0.25	0.35	0.20	0.20	0.20	0.20			
				MIN	1	W	14	24	14	24	5	7	5	7
Absorbed	power			ME	D	W	24	39	24	39	8	10	8	10
				MA	X	W	48	67	48	67	21	25	21	25
				MIN	1	dB	11	18	11	18	5	10	5	10
IR (***)				ME	D	dB	22	27	22	27	21	22	21	22
				MA	X	dB	33	36	33	36	32	33	32	33
				MIN	1	dB(A)	< 20	21	< 20	21	< 20	< 20	< 20	< 20
ound pov	wer level ((**)		ME	D	dB(A)	26	30	26	30	25	26	25	26
				MA	Χ	dB(A)	36	39	36	39	36	37	36	37
				MIN	1	dB(A)	26	30	26	30	22	25	22	25
Sound pov	wer (*)			ME	D	dB(A)	35	39	35	39	34	35	34	35
		MA		dB(A)	45	48	45	48	45	46	45	46		
	F. 20001	- c:=p*		MIN		Кра	2	2	2	1	2	1	2	1
xchanger	r pressure	e drop		ME		Кра	5	2	3	2	5	2	3	1
		MA		Кра	11	5	5	3	10.7	4	5	2		
xchanger water flow		MIN		l/h	163	256	96	156	139	199	85	178		
		ME		I/h	243	378	168 124	268	234	307	165 124	178		
				MIM MA		kW I/h	1.19 354	2.02 538	1.09	1.78 268	1.01 354	1.50 490	0.97	1.44 252
cnanger	r tnermal	power (2)		ME		kW	1.80	3.00	1.42	2.43	1.73	2.41	1.41	2.03
		(0)		MA		kW	2.65	4.16	1.91	3.05	2.62	3.81	1.88	2.87
				MIN		Кра	3	2	3	2	2	1	2	1
imary ex	xchanger	pressure dr	ор	ME		Кра	6	3	6	3	6	2	6	2
				MA		Кра	12	6	12	6	12	5	12	5
				MIN		l/h	163	256	163	256	139	199	139	199
xchanger	r water flo	ow		ME		l/h	243	378	243	378	234	307	234	307
				MA		l/h	354	538	354	538	354	490	354	490
				MIN	1	kW	0.68	1.12	0.68	1.12	0.58	0.84	0.58	0.84
ensitive o	cooling po	ower		ME	D	kW	1.02	1.70	1.02	1.70	0.99	1.36	0.99	1.36
		MA	X	kW	1.47	2.33	1.47	2.33	1.46	2.13	1.46	2.13		
		MIN	1	kW	0.95	1.49	0.95	1.49	0.81	1.16	0.81	1.16		
otal cooli	tal cooling power (1)		ME	D	kW	1.42	2.20	1.42	2.20	1.36	1.79	1.36	1.79	
Total cooling power (1)		MA	X	kW	2.07	3.13	2.07	3.13	2.06	2.86	2.06	2.86		
		MIN	1	m³/h	130	225	130	225	110	160	110	160		
rflow				ME	D	m³/h	210	360	210	360	200	280	200	280
				MA	X	m³/h	335	535	335	535	330	480	330	480

AC motor

4-pipe plant

634

320

2-pipe plant

634

320

4

	OCTAVE BAND dB (input + output + radiated)													
	SHS 634 AC							SHS 634 DC						
	125	250	500	1000	2000	4000	8000	125	250	500	1000	2000	4000	8000
MAX	52.9	51.0	48.6	39.7	31.2	24.8	20.8	50.9	48.9	46.4	37.0	27.8	21.3	20.2
MED	45.0	43.1	40.5	29.5	18.4	13.7	19.5	41.0	38.8	35.4	23.3	10.7	10.6	19.5
MIN	37.7	35.0	30.6	17.3	0	10.5	19.4	32.7	30.0	23.6	7.9	0	7.7	19.4

21.6

19.4

19.5

48.2

38.8

28.5

47.3

37.3

(1) Cold: T. Ambient: 27 °C - DB - 19 °C - T. water (in/out): 7/12 °C

 MAX

MED

MIN

48.5

39.7

31.7

47.6

38.3

29.3

- 2-pipe plant: Hot: T. Ambient: 20 °C T. water (in/out): 50°C same cooling water flow rate
 - 4-pipe plant: Hot: T. Ambient: 20 °C T. water (in/out): 70/60°C

45.7

35.5

24.9

39.9

28.8

16.3

31.9

19.8

27.2

14.0

10.8

- Measured sound power in reverberant chamber in accordance with ISO 3741
- (**) Sound pressure levels are lower than the power levels of 9 dB (A) for an environment of 100 m3 with reverberation time of 0.5 s
- (***) NR value based on a hypothetical reduction of sound power in the environment of 9d (B)

45.3

34.4

19.1

39.5

27.5

31.5

18.6

0

26.7

13.5

10.6

21.4

19.4

19.4

NOTES FOR DC MOTORS Speed data under the following conditions:

Max = 10 Volt - Med = 5 Volt - Min = 2 Volt

H-HWN_EC **DC Motors**

SCT-GH WPC-GH series remote controller

Optional wired controller

INTRODUCTION

H-HWN is a wall convector designed to meet and exceed the highest standards of efficiency, silence and design. With an elegant profile and a cabinet with a modern and functional design, it adapts to any environment, while the microprocessor control ensures accurate management of temperature and functions. The elegant cabinet is made of self-extinguishing ABS with a modern and silver-white look with rounded corners. The water exchanger has a large heat exchange surface and uses water repellent aluminium and internally ribbed copper pipes for a greater exchange surface. The water coil is also equipped with an air vent valve and a water purge valve.

The connecting pipes in synthetic elastomer, with external braid and stainless steel connectors allow fast connections without brazina.

The DC motor of the HWN wall convector is a tested electronic variable speed motor that guarantees optimal performance with maximum silence and minimum electrical consumption. Refined mesh "air filters" that are easy to remove and washable, are standard for all models.

The units are equipped with two independent deflectors and directional flaps, allowing the distribution of air in a personalized and automatic way in the room.

The unit is supplied with a standard wireless remote controller and 3-way valve already installed on board.

H-HWN_EC			25	30	40
2-PIPE PLANT (2)					
Power supply		V/Ph/Hz		230/1/50	
	MAX	m³/h	500	645	788
Airflow	MED	m³/h	370	445	740
	MIN	m³/h	290	370	570
	MAX	kW	2.49	3.02	3.74
otal cooling power (1)	MED	kW	1.86	2.40	3.28
	MIN	kW	1.61	1.94	2.68
	MAX	kW	1.81	2.22	2.74
ensitive cooling power	MED	kW	1.34	1.47	2.40
	MIN	kW	1.15	1.40	1.95
	MAX	l/h	427	525	641.91
xchanger water flow	MED	l/h	319	411	562.96
	MIN	l/h	276	332	459.98
	MAX	Кра	28.0	39.3	45.0
rimary exchanger pressure drop	MED	Кра	17.1	19.9	37.0
	MIN	Кра	13.4	18.4	25.6
	MAX	kW	3.21	3.93	4.87
xchanger thermal power	MED	kW	2.37	2.61	4.20
	MIN	kW	2.03	2.48	3.45
lectrical resistance power			1	1	1.5
	MAX	l/h	427	525	641.91
xchanger water flow	MED	l/h	319	411	562.96
	MIN	l/h	276	332	459.98
	MAX	Кра	22.7	31.8	28.8
xchanger pressure drop	MED	Кра	13.5	15.9	20.4
	MIN	Кра	10.7	14.8	19.2
	MAX	dB(A)	48	53	57
ound power	MED	dB(A)	40	43	52
	MIN	dB(A)	35	38	45
	MAX	dB(A)	37	43	46
ound pressure level	MED	dB(A)	30	34	40
	MIN	dB(A)	26	29	34
	MAX	W	13	20	30
bsorbed power	MED	W	10	13	20
	MIN	W	8	10	13
laximum motor electric absorption		А	0.142	0.182	0.272
CEER			195 A	187 B	183 B
FCCOP			248 B	230 B	238 B

- (1) T. Ambient: 27 °C DB 19 °C WB T. water (in/out): 7/12° C (2) T. Ambient: 20 °C T. water IN: 50 °C

HYDRONIC TERMINALS HACI **H-** Controllers & Accessories

Photos	Description	HAIER-W Code
1	Wall thermostat with speed selector and summer/winter changeover. Valve management.	SATH3
52	Advanced wall thermostat with speed selector and AUTO function, summer / winter changeover and AUTO function, management, valves, window contact.	SATH4
1100	On-board thermostat with speed and summer/winter changeover selector Kit version to be installed	SATH3-BI SATH3-BI KIT
0	Temperature sensor that can be used as minimum level probe for all SATH and SP3 controllers. For SATH4 and SP3 it can also be used as an external air probe.	SND (for water) SND AIR (for air)
111 ·	Programmable main electronic board, installed on the machine to regulate fan convectors with standard or brushless electronic motors. To be combined with SND water probe and TOP3 controller LCD display terminal.	SP3
<u>i 350</u>	Keypad, display for remote management of SP3 board	ТОРЗ
	Built-in wall thermostat in box 503 with AUTO speed selector, summer-winter mode and minimum level probe. Complete with adapter for aesthetic frames from the major manufacturers.	SATH5
0	Complete system for fan coil management with remote control. Includes SP3 main board, IRR SP3 infrared receiver, SND water probe, IRC SP3 infrared remote controller.	SP3 + IRR SP3 + SND +IRC SP3
	Power relay for motors up to 2.5 A (*) Version supplied in KIT to be installed for units with high electrical absorption downstream of the control / thermostat	ETBN 2.5A ETBN 25A-K
	Power relay for motors up to 6 A (*) Version supplied in KIT to be installed for units with high electrical absorption downstream of the control / thermostat	ETBN 6A ETBN 6A-K
24	Interface board for DC motor control with 3-speed external thermostat Version supplied in kit to be installed	SC3 SC3 K
NOTES		

(*) See Annex B for the maximum number of units to be put in Master / Slave sequence

For all hydraulic accessories, e.g. 2 and 3-way valves, additional coils, flexible couplings and anything that could be required for special installations, contact the HACI-Haier technical office.

Notes	Haie

Notes	Haier

